Reference(s)
Click here to return to the Reference Table

Category: Other Neoplasms


Cancer Type: Glioblastomas/Astrocytomas

HGF/SF expression

Reference Number: 185
Arrieta, O. et al. Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma. Cancer 94, 3210-8 (2002).
PubMed link      E-mail link

Reference Number: 186
Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-8 (1997).
PubMed link      E-mail link

Reference Number: 187
Kunkel, P. et al. Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro-oncol 3, 82-8 (2001).
PubMed link      E-mail link

Reference Number: 188
Lamszus, K., Laterra, J., Westphal, M. & Rosen, E. M. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci 17, 517-30 (1999).
PubMed link      E-mail link

Reference Number: 189
Moriyama, T., Kataoka, H., Koono, M. & Wakisaka, S. Expression of hepatocyte growth factor/scatter factor and its receptor c-Met in brain tumors: evidence for a role in progression of astrocytic tumors (Review). Int J Mol Med 3, 531-6 (1999).
PubMed link      E-mail link

Reference Number: 517
Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res. 12, 6144-52 (2006)
PubMed link      E-mail link

Reference Number: 519
Ma Y, Yuan RQ, Fan S, Hu C, Goldberg ID, Laterra JJ, Rosen EM. Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum. Anticancer Drugs. 17, 733-51 (2006)
PubMed link      E-mail link

Reference Number: 568
Chu SH, Ma YB, Zhang H, Feng DF, Zhu ZA, Li ZQ, Yuan XH. Hepatocyte growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells. J Neurooncol. 85, 33-8 (2007)
PubMed link      E-mail link

Reference Number: 607
Jun HT, Sun J, Rex K, Radinsky R, Kendall R, Coxon A, Burgess TL. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res. 13, 6735-42 (2007)
PubMed link      E-mail link

Reference Number: 623
Sheng-Hua C, Yan-Bin M, Zhi-An Z, Hong Z, Dong-Fu F, Zhi-Qiang L, Xian-Hou Y. Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. Surg Neurol. 68, 610-3 (2007)
PubMed link      E-mail link

Reference Number: 666
Wondergem R, Ecay TW, Mahieu F, Owsianik G, Nilius B. HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem Biophys Res Commun. 372, 210-5 (2008)
PubMed link      E-mail link

Reference Number: 719
Binning MJ, Niazi T, Pedone CA, Lal B, Eberhart CG, Kim KJ, Laterra J, Fults DW. Hepatocyte growth factor and sonic Hedgehog expression in cerebellar neural progenitor cells costimulate medulloblastoma initiation and growth. Cancer Res. 68, 7838-45 (2008)
PubMed link      E-mail link

Reference Number: 864
Garcia-Navarrete R, Garcia E, Arrieta O, Sotelo J. Hepatocyte growth factor in cerebrospinal fluid is associated with mortality and recurrence of glioblastoma, and could be of prognostic value. J Neurooncol. 97, 347-51 (2010)
PubMed link      E-mail link

Reference Number: 1016
Cao B, Su Y, Oskarsson M, Zhao P, Kort EJ, Fisher RJ, Wang LM, Vande Woude GF. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci U S A. 98, 7443-8 (2001)
PubMed link      E-mail link

Reference Number: 1060
Xie Q, Bradley R, Kang L, Koeman J, Ascierto ML, Worschech A, De Giorgi V, Wang E, Kefene L, Su Y, Essenburg C, Kaufman DW, DeKoning T, Enter MA, O'Rourke TJ, Marincola FM, Vande Woude GF. Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma. Proc Natl Acad Sci U S A. 109, 570-5 (2012)
PubMed link      E-mail link

Reference Number: 1358
Garnett J1, Chumbalkar V, Vaillant B, Gururaj AE, Hill KS, Latha K, Yao J, Priebe W, Colman H, Elferink LA, Bogler O. Regulation of HGF expression by ?EGFR-mediated c-Met activation in glioblastoma cells. Neoplasia. 15, 73-84 (2013)
PubMed link      E-mail link

Reference Number: 1423
Murray DW1, Didier S2, Chan A2, Paulino V3, Van Aelst L4, Ruggieri R2, Tran NL3, Byrne AT5, Symons M2. Guanine nucleotide exchange factor Dock7 mediates HGF-induced glioblastoma cell invasion via Rac activation. Br J Cancer. 110, 1307-15 (2014)
PubMed link      E-mail link

Reference Number: 1627
Feng C, Cao S. Activation of STAT5 contributes to proliferation in U87 human glioblastoma multiforme cells. Mol Med Rep. 10, 203-10 (2014)
PubMed link      E-mail link

Met expression

Reference Number: 186
Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-8 (1997).
PubMed link      E-mail link

Reference Number: 187
Kunkel, P. et al. Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro-oncol 3, 82-8 (2001).
PubMed link      E-mail link

Reference Number: 188
Lamszus, K., Laterra, J., Westphal, M. & Rosen, E. M. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci 17, 517-30 (1999).
PubMed link      E-mail link

Reference Number: 189
Moriyama, T., Kataoka, H., Koono, M. & Wakisaka, S. Expression of hepatocyte growth factor/scatter factor and its receptor c-Met in brain tumors: evidence for a role in progression of astrocytic tumors (Review). Int J Mol Med 3, 531-6 (1999).
PubMed link      E-mail link

Reference Number: 190
Hirose, Y. et al. Immunohistochemical examination of c-Met protein expression in astrocytic tumors. Acta Neuropathol (Berl) 95, 345-51. (1998).
PubMed link      E-mail link

Reference Number: 191
Nabeshima, K. et al. Expression of c-Met correlates with grade of malignancy in human astrocytic tumours: an immunohistochemical study. Histopathology 31, 436-43. (1997).
PubMed link      E-mail link

Reference Number: 519
Ma Y, Yuan RQ, Fan S, Hu C, Goldberg ID, Laterra JJ, Rosen EM. Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum. Anticancer Drugs. 17, 733-51 (2006)
PubMed link      E-mail link

Reference Number: 542
Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K. Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer. 121, 276-83 (2007)
PubMed link      E-mail link

Reference Number: 622
Tseng JR, Kang KW, Dandekar M, Yaghoubi S, Lee JH, Christensen JG, Muir S, Vincent PW, Michaud NR, Gambhir SS. Preclinical efficacy of the c-Met inhibitor CE-355621 in a U87 MG mouse xenograft model evaluated by 18F-FDG small-animal PET. J Nucl Med. 49, 129-34 (2008)
PubMed link      E-mail link

Reference Number: 695
Kong DS, Song SY, Kim DH, Joo KM, Yoo JS, Koh JS, Dong SM, Suh YL, Lee JI, Park K, Kim JH, Nam DH. Prognostic significance of c-Met expression in glioblastomas. Cancer. 115, 140-8 (2009)
PubMed link      E-mail link

Reference Number: 730
Kongkham PN, Northcott PA, Ra YS, Nakahara Y, Mainprize TG, Croul SE, Smith CA, Taylor MD, Rutka JT. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 68, 9945-53 (2008)
PubMed link      E-mail link

Reference Number: 731
Knudsen BS, Zhao P, Resau J, Cottingham S, Gherardi E, Xu E, Berghuis B, Daugherty J, Grabinski T, Toro J, Giambernardi T, Skinner RS, Gross M, Hudson E, Kort E, Lengyel E, Ventura A, West RA, Xie Q, Hay R, Woude GV, Cao B. A novel multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical and clinical settings. Appl Immunohistochem Mol Morphol. 17, 57-67 (2009)
PubMed link      E-mail link

Reference Number: 866
Pei Z, Sun P, Huang P, Lal B, Laterra J, Watkins PA. Acyl-CoA synthetase VL3 knockdown inhibits human glioma cell proliferation and tumorigenicity. Cancer Res. 69, 9175-82 (2009)
PubMed link      E-mail link

Reference Number: 940
Liu W, Fu Y, Xu S, Ding F, Zhao G, Zhang K, Du C, Pang B, Pang Q. c-Met expression is associated with time to recurrence in patients with glioblastoma multiforme. J Clin Neurosci. 18, 119-21 (2011)
PubMed link      E-mail link

Reference Number: 1060
Xie Q, Bradley R, Kang L, Koeman J, Ascierto ML, Worschech A, De Giorgi V, Wang E, Kefene L, Su Y, Essenburg C, Kaufman DW, DeKoning T, Enter MA, O'Rourke TJ, Marincola FM, Vande Woude GF. Hepatocyte growth factor (HGF) autocrine activation predicts sensitivity to MET inhibition in glioblastoma. Proc Natl Acad Sci U S A. 109, 570-5 (2012)
PubMed link      E-mail link

Reference Number: 1190
Jun HJ, Acquaviva J, Chi D, Lessard J, Zhu H, Woolfenden S, Bronson RT, Pfannl R, White F, Housman DE, Iyer L, Whittaker CA, Boskovitz A, Raval A, Charest A. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene. 31, 3039-50 (2012)
PubMed link      E-mail link

Reference Number: 1215
Joo KM, Jin J, Kim E, Ho Kim K, Kim Y, Gu Kang B, Kang YJ, Lathia JD, Cheong KH, Song PH, Kim H, Seol HJ, Kong DS, Lee JI, Rich JN, Lee J, Nam DH. MET signaling regulates glioblastoma stem cells. Cancer Res. 72, 3828-38 (2012)
PubMed link      E-mail link

Reference Number: 1221
De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, D'Ambrosio A, Porrati P, Patanè M, Maderna E, Pollo B, Comoglio PM, Finocchiaro G, Boccaccio C. The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res. 72, 4537-50 (2012)
PubMed link      E-mail link

Reference Number: 1263
Galavotti S, Bartesaghi S, Faccenda D, Shaked-Rabi M, Sanzone S, McEvoy A, Dinsdale D, Condorelli F, Brandner S, Campanella M, Grose R, Jones C, Salomoni P. The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene. 32, 699-712 (2013)
PubMed link      E-mail link

Reference Number: 1268
Yang H, Lee HW, Kim Y, Lee Y, Choi YS, Kim KH, Jin J, Lee J, Joo KM, Nam DH. Radiosensitization of brain metastasis by targeting c-MET. Lab Invest. 93, 344-53 (2013)
PubMed link      E-mail link

Reference Number: 1275
Miekus K, Kijowski J, Sekula M, Majka M. 17AEP-GA, an HSP90 antagonist, is a potent inhibitor of glioblastoma cell proliferation, survival, migration and invasion. Oncol Rep. 28, 1903-9 (2012)
PubMed link      E-mail link

Reference Number: 1329
Kim KH, Seol HJ, Kim EH, Rheey J, Jin HJ, Lee Y, Joo KM, Lee J, Nam DH. Wnt/ß-catenin signaling is a key downstream mediator of MET signaling in glioblastoma stem cells. Neuro Oncol. 15, 161-71 (2013)
PubMed link      E-mail link

Reference Number: 1350
Jahangiri A1, De Lay M, Miller LM, Carbonell WS, Hu YL, Lu K, Tom MW, Paquette J, Tokuyasu TA, Tsao S, Marshall R, Perry A, Bjorgan KM, Chaumeil MM, Ronen SM, Bergers G, Aghi MK. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin Cancer Res. 19, 1773-83 (2013)
PubMed link      E-mail link

Reference Number: 1410
Lee SJ1, Seol HJ, Lee HW, Kang WY, Kang BG, Jin J, Jo MY, Jin Y, Lee JI, Joo KM, Nam DH. Gene silencing of c-Met leads to brain metastasis inhibitory effects. Clin Exp Metastasis. 30, 845-54 (2013)
PubMed link      E-mail link

Reference Number: 1423
Murray DW1, Didier S2, Chan A2, Paulino V3, Van Aelst L4, Ruggieri R2, Tran NL3, Byrne AT5, Symons M2. Guanine nucleotide exchange factor Dock7 mediates HGF-induced glioblastoma cell invasion via Rac activation. Br J Cancer. 110, 1307-15 (2014)
PubMed link      E-mail link

Reference Number: 1469
Byeon SJ, Cho HJ, Baek HW, Park CK, Choi SH, Kim SH, Kim HK, Park SH. Rhabdoid glioblastoma is distinguishable from classical glioblastoma by cytogenetics and molecular genetics. Hum Pathol. 45, 611-20 (2014)
PubMed link      E-mail link

Reference Number: 1544
Jun HJ, Bronson RT, Charest A. Inhibition of EGFR induces a c-MET-driven stem cell population in glioblastoma. Stem Cells. 32, 338-48 (2013)
PubMed link      E-mail link

Reference Number: 1556
Olmez OF, Cubukcu E, Evrensel T, Kurt M, Avci N, Tolunay S, Bekar A, Deligonul A, Hartavi M, Alkis N, Manavoglu O. The immunohistochemical expression of c-Met is an independent predictor of survival in patients with glioblastoma multiforme. Clin Transl Oncol. 16, 173-7 (2014)
PubMed link      E-mail link

Reference Number: 1557
Basilico C, Hultberg A, Blanchetot C, de Jonge N, Festjens E, Hanssens V, Osepa SI, De Boeck G, Mira A, Cazzanti M, Morello V, Dreier T, Saunders M, de Haard H, Michieli P. Four individually druggable MET hotspots mediate HGF-driven tumor progression. J Clin Invest. 124, 3172-86 (2014)
PubMed link      E-mail link

Reference Number: 1648
Camacho CV, Todorova PK, Hardebeck MC, Tomimatsu N, Gil del Alcazar CR, Ilcheva M, Mukherjee B, McEllin B, Vemireddy V, Hatanpaa K, Story MD, Habib AA, Murty VV, Bachoo R, Burma S. DNA double-strand breaks cooperate with loss of Ink4 and Arf tumor suppressors to generate glioblastomas with frequent Met amplification. Oncogene. 34, 1064-72 (2015)
PubMed link      E-mail link

Reference Number: 1703
Furcht CM, Buonato JM, Skuli N, Mathew LK, Muñoz Rojas AR, Simon MC, Lazzara MJ. Multivariate signaling regulation by SHP2 differentially controls proliferation and therapeutic response in glioma cells. J Cell Sci. 127(Pt 16), 3555-67 (2014)
PubMed link      E-mail link

Reference Number: 1710
Luo H, Hong H, Slater MR, Graves SA, Shi S, Yang Y, Nickles RJ, Fan F, Cai W PET of c-Met in Cancer with 64Cu-Labeled Hepatocyte Growth Factor. J Nucl Med. 56, 758-63 (2015)
PubMed link      E-mail link

Reference Number: 1748
Wang X, Huang X, Yang Z, Gallego-Perez D, Ma J, Zhao X, Xie J, Nakano I, Lee LJ. Targeted delivery of tumor suppressor microRNA-1 by transferrin-conjugated lipopolyplex nanoparticles to patient-derived glioblastoma stem cells. Curr Pharm Biotechnol. 15, 839-46 (2014)
PubMed link      E-mail link

Reference Number: 1894
Lee JS, Oh E, Yoo JY, Choi KS, Yoon MJ, Yun CO. Adenovirus expressing dual c-Met-specific shRNA exhibits potent antitumor effect through autophagic cell death accompanied by senescence-like phenotypes in glioblastoma cells. Oncotarget. 6, 4051-65 (2015)
PubMed link      E-mail link

Poor Prognosis

Reference Number: 186
Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-8 (1997).
PubMed link      E-mail link

Reference Number: 695
Kong DS, Song SY, Kim DH, Joo KM, Yoo JS, Koh JS, Dong SM, Suh YL, Lee JI, Park K, Kim JH, Nam DH. Prognostic significance of c-Met expression in glioblastomas. Cancer. 115, 140-8 (2009)
PubMed link      E-mail link

Reference Number: 1305
Pierscianek D, Kim YH, Motomura K, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K, Wrede K, Nakazato Y, Tanaka Y, Mariani L, Vital A, Sure U, Ohgaki H. MET gain in diffuse astrocytomas is associated with poorer outcome. Brain Pathol. 23, 13-8 (2013)
PubMed link      E-mail link

Mutation of Met

Reference Number: 683
Moon YW, Weil RJ, Pack SD, Park WS, Pak E, Pham T, Karkera JD, Kim HK, Vortmeyer AO, Fuller BG, Zhuang Z. Missense mutation of the MET gene detected in human glioma. Mod Pathol13, 973-7 (2000)
PubMed link      E-mail link

Reference Number: 1883
Navis AC, van Lith SA, van Duijnhoven SM, de Pooter M, Yetkin-Arik B, Wesseling P, Hendriks WJ, Venselaar H, Timmer M, van Cleef P, van Bergen En Henegouwen P, Best MG, Wurdinger TD, Tops BB, Leenders WP. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 130, 131-44 (2015)
PubMed link      E-mail link

In vitro studies

Reference Number: 1
Joseph, A. et al. Expression of scatter factor in human bladder carcinoma. J Natl Cancer Inst 87, 372-7. (1995).
PubMed link      E-mail link

Reference Number: 186
Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-8 (1997).
PubMed link      E-mail link

Reference Number: 192
Moriyama, T. et al. Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem Biophys Res Commun 249, 73-7 (1998).
PubMed link      E-mail link

Reference Number: 193
Rosen, E. M. et al. Scatter factor expression and regulation in human glial tumors. Int J Cancer 67, 248-55 (1996).
PubMed link      E-mail link

Reference Number: 270
Brockmann MA, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 52:1391-9 (2003).
PubMed link      E-mail link

Reference Number: 418
Uchinokura S, Miyata S, Fukushima T, Itoh H, Nakano S, Wakisaka S, Kataoka H. Role of hepatocyte growth factor activator (HGF activator) in invasive growth of human glioblastoma cells in vivo. Int J Cancer118, 583-92 (2006)
PubMed link      E-mail link

Reference Number: 518
Beckner ME, Zhang Z, Agostino NR, Day BW, Pollack IF. Albumin marks pseudopodia of astrocytoma cells responding to hepatocyte growth factor or serum. Lab Invest. 86, 1103-14 (2006)
PubMed link      E-mail link

Reference Number: 520
Xia S, Laterra J. Hepatocyte growth factor increases mitochondrial mass in glioblastoma cells. Biochem Biophys Res Commun. 345, 1358-64 (2006)
PubMed link      E-mail link

Reference Number: 542
Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K. Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer. 121, 276-83 (2007)
PubMed link      E-mail link

Reference Number: 567
Chu SH, Zhang H, Ma YB, Feng DF, Zhu ZA, Yuan XH, Li ZQ. c-Met antisense oligodeoxynucleotides as a novel therapeutic agent for glioma: in vitro and in vivo studies of uptake, effects, and toxicity. J Surg Res. 141, 284-8 (2007)
PubMed link      E-mail link

Reference Number: 586
Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O, Mikkelsen T, Hirose T, Nishikawa R, Cheng SY. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene. 26, 5577-86 (2007)
PubMed link      E-mail link

Reference Number: 679
Reznik TE, Sang Y, Ma Y, Abounader R, Rosen EM, Xia S, Laterra J. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor. Mol Cancer Res. 6, 139-50 (2008)
PubMed link      E-mail link

Reference Number: 729
Zhao D, Najbauer J, Garcia E, Metz MZ, Gutova M, Glackin CA, Kim SU, Aboody KS. Neural stem cell tropism to glioma: critical role of tumor hypoxia. Mol Cancer Res. 6, 1819-29 (2008)
PubMed link      E-mail link

Reference Number: 860
Gao CF, Xie Q, Su YL, Koeman J, Khoo SK, Gustafson M, Knudsen BS, Hay R, Shinomiya N, Vande Woude GF. Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A. 102, 10528-33 (2005)
PubMed link      E-mail link

Reference Number: 1125
Li Y, Li A, Glas M, Lal B, Ying M, Sang Y, Xia S, Trageser D, Guerrero-Cázares H, Eberhart CG, Quiñones-Hinojosa A, Scheffler B, Laterra J. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci U S A. 108, 9951-6 (2011)
PubMed link      E-mail link

Reference Number: 1221
De Bacco F, Casanova E, Medico E, Pellegatta S, Orzan F, Albano R, Luraghi P, Reato G, D'Ambrosio A, Porrati P, Patanè M, Maderna E, Pollo B, Comoglio PM, Finocchiaro G, Boccaccio C. The MET oncogene is a functional marker of a glioblastoma stem cell subtype. Cancer Res. 72, 4537-50 (2012)
PubMed link      E-mail link

Reference Number: 1505
Grogan PT, Sleder KD, Samadi AK, Zhang H, Timmermann BN, Cohen MS. Cytotoxicity of withaferin A in glioblastomas involves induction of an oxidative stress-mediated heat shock response while altering Akt/mTOR and MAPK signaling pathways. Invest New Drugs. 31, 545-57 (2013)
PubMed link      E-mail link

Reference Number: 1638
Li L, Puliyappadamba VT, Chakraborty S, Rehman A, Vemireddy V, Saha D, Souza RF, Hatanpaa KJ, Koduru P, Burma S, Boothman DA, Habib AA. EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma. Oncogene. 34, 129-34 (2015)
PubMed link      E-mail link

Animal models

Reference Number: 186
Koochekpour, S. et al. Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Res 57, 5391-8 (1997).
PubMed link      E-mail link

Reference Number: 196
Book, A. A., Ranganathan, S., Abounader, R., Rosen, E. & Laterra, J. Scatter factor/hepatocyte growth factor gene transfer increases rat blood-glioma barrier permeability. Brain Res 833, 173-80 (1999).
PubMed link      E-mail link

Reference Number: 197
Bowers, D. C. et al. Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT- dependent pathways. Cancer Res 60, 4277-83. (2000).
PubMed link      E-mail link

Reference Number: 198
Cao, B. et al. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci U S A 98, 7443-8 (2001).
PubMed link      E-mail link

Reference Number: 200
Laterra, J. et al. Scatter factor/hepatocyte growth factor expression enhances human glioblastoma tumorigenicity and growth. Biochem Biophys Res Commun 235, 743-7 (1997).
PubMed link      E-mail link

Reference Number: 201
Laterra, J. et al. Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest 76, 565-77. (1997).
PubMed link      E-mail link

Reference Number: 326
Zhang YW, Su Y, Lanning N, Gustafson M, Shinomiya N, Zhao P, Cao B, Tsarfaty G, Wang LM, Hay R, Vande Woude GF Enhanced growth of human met-expressing xenografts in a new strain of immunocompromised mice transgenic for human hepatocyte growth factor/scatter factor. Oncogene 24, 101-6 (2005)
PubMed link      E-mail link

Reference Number: 345
Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, Vande Woude GF. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res64, 7962-70 (2004)
PubMed link      E-mail link

Reference Number: 1194
Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers G. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 22, 21-35 (2012)
PubMed link      E-mail link

Reference Number: 1503
Rex K, Lewis XZ, Gobalakrishnan S, Glaus C, Silva MD, Radinsky R, Burgess TL, Gambhir SS, Coxon A. Evaluation of the antitumor effects of rilotumumab by PET imaging in a U-87 MG mouse xenograft model. Nucl Med Biol. 40, 458-63 (2013)
PubMed link      E-mail link

Therapeutic Development

Reference Number: 194
Abounader, R. et al. Reversion of human glioblastoma malignancy by U1 small nuclear RNA/ribozyme targeting of scatter factor/hepatocyte growth factor and c-met expression. J Natl Cancer Inst 91, 1548-56 (1999).
PubMed link      E-mail link

Reference Number: 195
Abounader, R. et al. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. Faseb J 16, 108-10 (2002).
PubMed link      E-mail link

Reference Number: 199
Guerin, C., Luddy, C., Abounader, R., Lal, B. & Laterra, J. Glioma inhibition by HGF/NK2, an antagonist of scatter factor/hepatocyte growth factor. Biochem Biophys Res Commun 273, 287-93 (2000).
PubMed link      E-mail link

Reference Number: 269
Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K. Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res 9:4578-85 (2003).
PubMed link      E-mail link

Reference Number: 336
Xie Q, Gao CF, Shinomiya N, Sausville E, Hay R, Gustafson M, Shen Y, Wenkert D, Vande Woude GF. Geldanamycins exquisitely inhibit HGF/SF-mediated tumor cell invasion. Oncogene 24, 3697-707 (2005)
PubMed link      E-mail link

Reference Number: 345
Shinomiya N, Gao CF, Xie Q, Gustafson M, Waters DJ, Zhang YW, Vande Woude GF. RNA interference reveals that ligand-independent met activity is required for tumor cell signaling and survival. Cancer Res64, 7962-70 (2004)
PubMed link      E-mail link

Reference Number: 350
Lal B, Xia S, Abounader R, Laterra J. Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation. Clin Cancer Res. 11, 4479-86 (2005)
PubMed link      E-mail link

Reference Number: 517
Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, Schwall R, Westphal M, Lamszus K. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res. 12, 6144-52 (2006)
PubMed link      E-mail link

Reference Number: 521
Chu S, Yuan X, Li Z, Jiang P, Zhang J. C-Met antisense oligodeoxynucleotide inhibits growth of glioma cells. Surg Neurol. 65, 533-8 (2006)
PubMed link      E-mail link

Reference Number: 522
Chu SH, Zhu ZA, Yuan XH, Li ZQ, Jiang PC. In vitro and in vivo potentiating the cytotoxic effect of radiation on human U251 gliomas by the c-Met antisense oligodeoxynucleotides. J Neurooncol. 80, 143-9 (2006)
PubMed link      E-mail link

Reference Number: 567
Chu SH, Zhang H, Ma YB, Feng DF, Zhu ZA, Yuan XH, Li ZQ. c-Met antisense oligodeoxynucleotides as a novel therapeutic agent for glioma: in vitro and in vivo studies of uptake, effects, and toxicity. J Surg Res. 141, 284-8 (2007)
PubMed link      E-mail link

Reference Number: 585
Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci U S A. 104, 12867-72 (2007)
PubMed link      E-mail link

Reference Number: 606
Towner RA, Smith N, Doblas S, Tesiram Y, Garteiser P, Saunders D, Cranford R, Silasi-Mansat R, Herlea O, Ivanciu L, Wu D, Lupu F. In vivo detection of c-Met expression in a rat C6 glioma model. J Cell Mol Med. 12, 174-86 (2008)
PubMed link      E-mail link

Reference Number: 607
Jun HT, Sun J, Rex K, Radinsky R, Kendall R, Coxon A, Burgess TL. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 MG cells and xenografts. Clin Cancer Res. 13, 6735-42 (2007)
PubMed link      E-mail link

Reference Number: 622
Tseng JR, Kang KW, Dandekar M, Yaghoubi S, Lee JH, Christensen JG, Muir S, Vincent PW, Michaud NR, Gambhir SS. Preclinical efficacy of the c-Met inhibitor CE-355621 in a U87 MG mouse xenograft model evaluated by 18F-FDG small-animal PET. J Nucl Med. 49, 129-34 (2008)
PubMed link      E-mail link

Reference Number: 703
Zhang Y, Kaplan-Lefko PJ, Rex K, Yang Y, Moriguchi J, Osgood T, Mattson B, Coxon A, Reese M, Kim TS, Lin J, Chen A, Burgess TL, Dussault I. Identification of a novel recepteur d'origine nantais/c-met small-molecule kinase inhibitor with antitumor activity in vivo. Cancer Res. 68, 6680-7 (2008)
PubMed link      E-mail link

Reference Number: 711
Burgess T, Coxon A, Meyer S, Sun J, Rex K, Tsuruda T, Chen Q, Ho SY, Li L, Kaufman S, McDorman K, Cattley RC, Sun J, Elliott G, Zhang K, Feng X, Jia XC, Green L, Radinsky R, Kendall R. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res. 66, 1721-9 (2006)
PubMed link      E-mail link

Reference Number: 859
Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat Oncol. 4:69 (2009)
PubMed link      E-mail link

Reference Number: 861
Li Y, Guessous F, DiPierro C, Zhang Y, Mudrick T, Fuller L, Johnson E, Marcinkiewicz L, Engelhardt M, Kefas B, Schiff D, Kim J, Abounader R. Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy. Mol Cancer Ther. 8, 376-85 (2009)
PubMed link      E-mail link

Reference Number: 862
Pillay V, Allaf L, Wilding AL, Donoghue JF, Court NW, Greenall SA, Scott AM, Johns TG. The plasticity of oncogene addiction: implications for targeted therapies directed to receptor tyrosine kinases. Neoplasia. 11, 448-58 (2009)
PubMed link      E-mail link

Reference Number: 863
Lal B, Goodwin CR, Sang Y, Foss CA, Cornet K, Muzamil S, Pomper MG, Kim J, Laterra J. EGFRvIII and c-Met pathway inhibitors synergize against PTEN-null/EGFRvIII+ glioblastoma xenografts. Mol Cancer Ther. 8, 1751-60 (2009)
PubMed link      E-mail link

Reference Number: 865
Zhao P, Gao C, Dykema K, Furge K, Feng Z, Cao B. Repeated hepatocyte growth factor neutralizing antibody treatment leads to HGF/SF unresponsiveness in human glioblastoma multiforme cells. Cancer Lett. 291, 209-16 (2010)
PubMed link      E-mail link

Reference Number: 867
Guessous F, Zhang Y, diPierro C, Marcinkiewicz L, Sarkaria J, Schiff D, Buchanan S, Abounader R. An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med Chem. 10, 28-35 (2010)
PubMed link      E-mail link

Reference Number: 962
Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, Wolf M, Oliner KS, Anderson A, Zhu M, Loh E, Reardon DA. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 13, 437-46 (2011)
PubMed link      E-mail link

Reference Number: 1016
Cao B, Su Y, Oskarsson M, Zhao P, Kort EJ, Fisher RJ, Wang LM, Vande Woude GF. Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci U S A. 98, 7443-8 (2001)
PubMed link      E-mail link

Reference Number: 1181
Jin J, Bae KH, Yang H, Lee SJ, Kim H, Kim Y, Joo KM, Seo SW, Park TG, Nam DH. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjug Chem. 22, 2568-72 (2011)
PubMed link      E-mail link

Reference Number: 1214
Vosjan MJ, Vercammen J, Kolkman JA, Stigter-van Walsum M, Revets H, van Dongen GA. Nanobodies targeting the hepatocyte growth factor: potential new drugs for molecular cancer therapy. Mol Cancer Ther. 11, 1017-25 (2012)
PubMed link      E-mail link

Reference Number: 1268
Yang H, Lee HW, Kim Y, Lee Y, Choi YS, Kim KH, Jin J, Lee J, Joo KM, Nam DH. Radiosensitization of brain metastasis by targeting c-MET. Lab Invest. 93, 344-53 (2013)
PubMed link      E-mail link

Reference Number: 1275
Miekus K, Kijowski J, Sekula M, Majka M. 17AEP-GA, an HSP90 antagonist, is a potent inhibitor of glioblastoma cell proliferation, survival, migration and invasion. Oncol Rep. 28, 1903-9 (2012)
PubMed link      E-mail link

Reference Number: 1349
Zhang Y1, Farenholtz KE, Yang Y, Guessous F, Dipierro CG, Calvert VS, Deng J, Schiff D, Xin W, Lee JK, Purow B, Christensen J, Petricoin E, Abounader R. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition. Clin Cancer Res. 19, 1433-44 (2013)
PubMed link      E-mail link

Reference Number: 1410
Lee SJ1, Seol HJ, Lee HW, Kang WY, Kang BG, Jin J, Jo MY, Jin Y, Lee JI, Joo KM, Nam DH. Gene silencing of c-Met leads to brain metastasis inhibitory effects. Clin Exp Metastasis. 30, 845-54 (2013)
PubMed link      E-mail link

Reference Number: 1503
Rex K, Lewis XZ, Gobalakrishnan S, Glaus C, Silva MD, Radinsky R, Burgess TL, Gambhir SS, Coxon A. Evaluation of the antitumor effects of rilotumumab by PET imaging in a U-87 MG mouse xenograft model. Nucl Med Biol. 40, 458-63 (2013)
PubMed link      E-mail link

Reference Number: 1704
Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng CY, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev. 29, 732-45 (2015)
PubMed link      E-mail link

Reviews

Reference Number: 677
Moriyama T, Kataoka H, Koono M, Wakisaka S. Expression of hepatocyte growth factor/scatter factor and its receptor c-Met in brain tumors: evidence for a role in progression of astrocytic tumors (Review). Int J Mol Med. 3, 531-6 (1999)
PubMed link      E-mail link

Reference Number: 775
Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol. 7, 436-51 (2005)
PubMed link      E-mail link

Reference Number: 888
Lamszus K, Laterra J, Westphal M, Rosen EM. Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. Int J Dev Neurosci. 17, 517-30 (1999)
PubMed link      E-mail link

Reference Number: 1504
Boccaccio C, Comoglio PM. The MET oncogene in glioblastoma stem cells: implications as a diagnostic marker and a therapeutic target. Cancer Res. 73, 3193-9 (2013)
PubMed link      E-mail link

Cancer Type: Melanoma

HGF/SF expression

Reference Number: 202
Hendrix, M. J. et al. Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor/scatter factor (HGF/SF). Am J Pathol 152, 855-63. (1998).
PubMed link      E-mail link

Reference Number: 338
Nambiar S, Mirmohammadsadegh A, Doroudi R, Gustrau A, Marini A, Roeder G, Ruzicka T, Hengge UR.Signaling networks in cutaneous melanoma metastasis identified by complementary DNA microarrays. Arch Dermatol. 141, 165-73 (2005)
PubMed link      E-mail link

Reference Number: 412
Wolnicka-Glubisz A, Noonan FP. Neonatal susceptibility to UV induced cutaneous malignant melanoma in a mouse model. Photochem Photobiol Sci. 5 254-60 (2006)
PubMed link      E-mail link

Reference Number: 419
Poon VK, Huang L, Burd A. Biostimulation of dermal fibroblast by sublethal Q-switched Nd:YAG 532 nm laser: collagen remodeling and pigmentation. J Photochem Photobiol B. 81, 1-8 (2005)
PubMed link      E-mail link

Reference Number: 420
Cools-Lartigue J, Marshall JC, Caissie AL, Saraiva VS, Burnier MN Jr. Secretion of hepatocyte growth factor and vascular endothelial growth factor during uveal melanoma-monocyte in vitro interactions. Melanoma Res.15, 141-5 (2005)
PubMed link      E-mail link

Reference Number: 523
Gao L, Feng Y, Bowers R, Becker-Hapak M, Gardner J, Council L, Linette G, Zhao H, Cornelius LA. Ras-associated protein-1 regulates extracellular signal-regulated kinase activation and migration in melanoma cells: two processes important to melanoma tumorigenesis and metastasis. Cancer Res. 66, 7880-8 (2006)
PubMed link      E-mail link

Reference Number: 524
Tormo D, Ferrer A, Gaffal E, Wenzel J, Basner-Tschakarjan E, Steitz J, Heukamp LC, Gütgemann I, Buettner R, Malumbres M, Barbacid M, Merlino G, Tüting T. Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation. Am J Pathol. 169, 665-72 (2006)
PubMed link      E-mail link

Reference Number: 525
Tormo D, Ferrer A, Bosch P, Gaffal E, Basner-Tschakarjan E, Wenzel J, Tüting T. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res. 66, 5427-35 (2006)
PubMed link      E-mail link

Reference Number: 543
Gaggioli C, Deckert M, Robert G, Abbe P, Batoz M, Ehrengruber MU, Ortonne JP, Ballotti R, Tartare-Deckert S. HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1. Oncogene. 24, 1423-33 (2005)
PubMed link      E-mail link

Reference Number: 869
Damm S, Koefinger P, Stefan M, Wels C, Mehes G, Richtig E, Kerl H, Otte M, Schaider H. HGF-promoted motility in primary human melanocytes depends on CD44v6 regulated via NF-kappa B, Egr-1, and C/EBP-beta. J Invest Dermatol. 130, 1893-903 (2010)
PubMed link      E-mail link

Reference Number: 871
Topcu-Yilmaz P, Kiratli H, Saglam A, Söylemezoglu F, Hascelik G. Correlation of clinicopathological parameters with HGF, c-Met, EGFR, and IGF-1R expression in uveal melanoma. Melanoma Res. 20, 126-32 (2010)
PubMed link      E-mail link

Reference Number: 883
Oka M, Kikkawa U, Nishigori C. Protein kinase C-betaII represses hepatocyte growth factor-induced invasion by preventing the association of adapter protein Gab1 and phosphatidylinositol 3-kinase in melanoma cells. J Invest Dermatol. 128, 188-95 (2008)
PubMed link      E-mail link

Reference Number: 1206
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487, 500-4 (2012)
PubMed link      E-mail link

Reference Number: 1207
Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 487, 505-9 (2012)
PubMed link      E-mail link

Reference Number: 1535
Kwon MJ, Kim DH, Park HR, Shin HS, Kwon JH, Lee DJ, Kim JH, Cho SJ, Nam ES. Frequent hepatocyte growth factor overexpression and low frequency of c-Met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 45, 1327-38 (2014)
PubMed link      E-mail link

Reference Number: 1607
Lezcano C, Lee CW, Larson AR, Menzies AM, Kefford RF, Thompson JF, Mihm MC Jr, Ogino S, Long GV, Scolyer RA, Murphy GF. Evaluation of stromal HGF immunoreactivity as a biomarker for melanoma response to RAF inhibitors. Mod Pathol. 27, 1193-202 (2014)
PubMed link      E-mail link

Reference Number: 1731
Cheng H, Terai M, Kageyama K, Ozaki S, McCue PA, Sato T, Aplin AE Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma. Cancer Res. 75, 2737-48 (2015)
PubMed link      E-mail link

Reference Number: 1776
Hwang S, Kim HE, Min M, Raghunathan R, Panova IP, Munshi R, Ryu B. Epigenetic Silencing of SPINT2 Promotes Cancer Cell Motility via HGF-MET Pathway Activation in Melanoma. J Invest Dermatol. 135, 2283-91 (2015)
PubMed link      E-mail link

Reference Number: 1891
Fedorenko IV, Wargo JA, Flaherty KT, Messina JL, Smalley KS. BRAF Inhibition Generates a Host-Tumor Niche that Mediates Therapeutic Escape. J Invest Dermatol. 135, 3115-24 (2015)
PubMed link      E-mail link

Met expression

Reference Number: 203
Natali, P. G. et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68, 746-50. (1993).
PubMed link      E-mail link

Reference Number: 338
Nambiar S, Mirmohammadsadegh A, Doroudi R, Gustrau A, Marini A, Roeder G, Ruzicka T, Hengge UR.Signaling networks in cutaneous melanoma metastasis identified by complementary DNA microarrays. Arch Dermatol. 141, 165-73 (2005)
PubMed link      E-mail link

Reference Number: 414
McGill GG, Haq R, Nishimura EK, Fisher DE. c-Met expression is regulated by Mitf in the melanocyte lineage. J Biol Chem. 281, 10365-73 (2006)
PubMed link      E-mail link

Reference Number: 836
Abdel-Rahman MH, Boru G, Massengill J, Salem MM, Davidorf FH. MET oncogene inhibition as a potential target of therapy for uveal melanomas. Invest Ophthalmol Vis Sci. 51, 3333-9 (2010)
PubMed link      E-mail link

Reference Number: 870
Mascarenhas JB, Littlejohn EL, Wolsky RJ, Young KP, Nelson M, Salgia R, Lang D. PAX3 and SOX10 activate MET receptor expression in melanoma. Pigment Cell Melanoma Res. 23, 225-37 (2010)
PubMed link      E-mail link

Reference Number: 871
Topcu-Yilmaz P, Kiratli H, Saglam A, Söylemezoglu F, Hascelik G. Correlation of clinicopathological parameters with HGF, c-Met, EGFR, and IGF-1R expression in uveal melanoma. Melanoma Res. 20, 126-32 (2010)
PubMed link      E-mail link

Reference Number: 872
Stevens L, McClelland L, Fricke A, Williamson M, Kuo I, Scott G. Plexin B1 suppresses c-Met in melanoma: a role for plexin B1 as a tumor-suppressor protein through regulation of c-Met. J Invest Dermatol. 130, 1636-45 (2010)
PubMed link      E-mail link

Reference Number: 881
Beuret L, Flori E, Denoyelle C, Bille K, Busca R, Picardo M, Bertolotto C, Ballotti R. Up-regulation of MET expression by alpha-melanocyte-stimulating hormone and MITF allows hepatocyte growth factor to protect melanocytes and melanoma cells from apoptosis. J Biol Chem. 282, 14140-7 (2007)
PubMed link      E-mail link

Reference Number: 882
Mallikarjuna K, Pushparaj V, Biswas J, Krishnakumar S. Expression of epidermal growth factor receptor, ezrin, hepatocyte growth factor, and c-Met in uveal melanoma: an immunohistochemical study. Curr Eye Res. 32, 281-90 (2007)
PubMed link      E-mail link

Reference Number: 966
Vanbrocklin MW, Robinson JP, Whitwam T, Guilbeault AR, Koeman J, Swiatek PJ, Vande Woude GF, Khoury JD, Holmen SL. Met amplification and tumor progression in Cdkn2a-deficient melanocytes. Pigment Cell Melanoma Res. 22, 454-60 (2009)
PubMed link      E-mail link

Reference Number: 1105
Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E, Migliore C, Giordano S, Chiarugi P. HIF-1a stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 51, 893-904 (2011)
PubMed link      E-mail link

Reference Number: 1142
Syed ZA, Yin W, Hughes K, Gill JN, Shi R, Clifford JL. HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer. 11, 180 (2011)
PubMed link      E-mail link

Reference Number: 1164
Dong F, Lou D. MicroRNA-34b/c suppresses uveal melanoma cell proliferation and migration through multiple targets. Mol Vis. 18, 537-46 (2012)
PubMed link      E-mail link

Reference Number: 1165
Chattopadhyay C, Ellerhorst JA, Ekmekcioglu S, Greene VR, Davies MA, Grimm EA. Association of activated c-Met with NRAS-mutated human melanomas. Int J Cancer. 131, E56-65 (2012)
PubMed link      E-mail link

Reference Number: 1166
Wu X, Zhou J, Rogers AM, Jänne PA, Benedettini E, Loda M, Hodi FS. c-Met, epidermal growth factor receptor, and insulin-like growth factor-1 receptor are important for growth in uveal melanoma and independently contribute to migration and metastatic potential. Melanoma Res. 22, 123-32 (2012)
PubMed link      E-mail link

Reference Number: 1188
Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18, 883-91 (2012)
PubMed link      E-mail link

Reference Number: 1189
Thu YM, Su Y, Yang J, Splittgerber R, Na S, Boyd A, Mosse C, Simons C, Richmond A. NF-?B inducing kinase (NIK) modulates melanoma tumorigenesis by regulating expression of pro-survival factors through the ß-catenin pathway. Oncogene. 31, 2580-92 (2012)
PubMed link      E-mail link

Reference Number: 1322
Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz-Wagenblatt A, Holland-Cunz S, Sinnberg T, Schittek B, Schadendorf D, Diederichs S, Eichmüller SB. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 133, 768-75 (2013)
PubMed link      E-mail link

Reference Number: 1323
Swoboda A, Schanab O, Tauber S, Bilban M, Berger W, Petzelbauer P, Mikula M. MET expression in melanoma correlates with a lymphangiogenic phenotype. Hum Mol Genet. 21, 3387-96 (2012)
PubMed link      E-mail link

Reference Number: 1535
Kwon MJ, Kim DH, Park HR, Shin HS, Kwon JH, Lee DJ, Kim JH, Cho SJ, Nam ES. Frequent hepatocyte growth factor overexpression and low frequency of c-Met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 45, 1327-38 (2014)
PubMed link      E-mail link

Reference Number: 1546
Surriga O, Rajasekhar VK, Ambrosini G, Dogan Y, Huang R, Schwartz GK. Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model. Mol Cancer Ther. 12, 2817-26 (2014)
PubMed link      E-mail link

Reference Number: 1665
Gangemi R, Amaro A, Gino A, Barisione G, Fabbi M, Pfeffer U, Brizzolara A, Queirolo P, Salvi S, Boccardo S, Gualco M, Spagnolo F, Jager MJ, Mosci C, Rossello A, Ferrini S. ADAM10 correlates with uveal melanoma metastasis and promotes in vitro invasion. Pigment Cell Melanoma Res. 27, 1138-48 (2014)
PubMed link      E-mail link

Reference Number: 1731
Cheng H, Terai M, Kageyama K, Ozaki S, McCue PA, Sato T, Aplin AE Paracrine Effect of NRG1 and HGF Drives Resistance to MEK Inhibitors in Metastatic Uveal Melanoma. Cancer Res. 75, 2737-48 (2015)
PubMed link      E-mail link

Reference Number: 1764
Gardner FP, Serie DJ, Salomao DR, Wu KJ, Markovic SN, Pulido JS, Joseph RW. c-MET expression in primary and liver metastases in uveal melanoma. Melanoma Res. 24, 617-20 (2015)
PubMed link      E-mail link

Reference Number: 1851
Kubic JD, Little EC, Lui JW, Iizuka T, Lang D. PAX3 and ETS1 synergistically activate MET expression in melanoma cells. Oncogene. 34, 4964-74 (2015)
PubMed link      E-mail link

Reference Number: 1852
Barisione G, Fabbi M, Gino A, Queirolo P, Orgiano L, Spano L, Picasso V, Pfeffer U, Mosci C, Jager MJ, Ferrini S, Gangemi R. Potential Role of Soluble c-Met as a New Candidate Biomarker of Metastatic Uveal Melanoma. JAMA Ophthalmol. 133, 1013-21 (2015)
PubMed link      E-mail link

Poor Prognosis

Mutation of Met

In vitro studies

Reference Number: 204
Halaban, R. et al. Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 7, 2195-206. (1992).
PubMed link      E-mail link

Reference Number: 205
Halaban, R., Rubin, J. S. & White, W. met and HGF-SF in normal melanocytes and melanoma cells. Exs 65, 329-39 (1993).
PubMed link      E-mail link

Reference Number: 271
Recio JA, Merlino G. Hepatocyte growth factor/scatter factor induces feedback up-regulation of CD44v6 in melanoma cells through Egr-1. Cancer Res 63:1576-82 (2003).
PubMed link      E-mail link

Reference Number: 413
Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, Giordano S, Pani G, Galeotti T. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene. 25, 3689-98 (2006)
PubMed link      E-mail link

Reference Number: 419
Poon VK, Huang L, Burd A. Biostimulation of dermal fibroblast by sublethal Q-switched Nd:YAG 532 nm laser: collagen remodeling and pigmentation. J Photochem Photobiol B. 81, 1-8 (2005)
PubMed link      E-mail link

Reference Number: 420
Cools-Lartigue J, Marshall JC, Caissie AL, Saraiva VS, Burnier MN Jr. Secretion of hepatocyte growth factor and vascular endothelial growth factor during uveal melanoma-monocyte in vitro interactions. Melanoma Res.15, 141-5 (2005)
PubMed link      E-mail link

Reference Number: 1041
Yang D, Tao J, Li L, Kedei N, Tóth ZE, Czap A, Velasquez JF, Mihova D, Michalowski AM, Yuspa SH, Blumberg PM. RasGRP3, a Ras activator, contributes to signaling and the tumorigenic phenotype in human melanoma. Oncogene. 30, 4590-600 (2011)
PubMed link      E-mail link

Reference Number: 1142
Syed ZA, Yin W, Hughes K, Gill JN, Shi R, Clifford JL. HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer. 11, 180 (2011)
PubMed link      E-mail link

Reference Number: 1452
Furukawa K1, Kambe M, Miyata M, Ohkawa Y, Tajima O, Furukawa K. Ganglioside GD3 induces convergence and synergism of adhesion and hepatocyte growth factor/Met signals in melanomas. Cancer Sci. 105, 52-63 (2014)
PubMed link      E-mail link

Animal models

Reference Number: 28
Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc Natl Acad Sci U S A 94, 701-6 (1997).
PubMed link      E-mail link

Reference Number: 206
Noonan, F. P., Otsuka, T., Bang, S., Anver, M. R. & Merlino, G. Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res 60, 3738-43 (2000).
PubMed link      E-mail link

Reference Number: 207
Noonan, F. P., Dudek, J., Merlino, G. & De Fabo, E. C. Animal models of melanoma: an HGF/SF transgenic mouse model may facilitate experimental access to UV initiating events. Pigment Cell Res 16, 16-25. (2003).
PubMed link      E-mail link

Reference Number: 208
Otsuka, T. et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res 58, 5157-67 (1998).
PubMed link      E-mail link

Reference Number: 209
Recio, J. A. & Merlino, G. Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK, ATF-2 and cyclin D1. Oncogene 21, 1000-8. (2002).
PubMed link      E-mail link

Reference Number: 210
Yu, Y. & Merlino, G. Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res 62, 2951-6. (2002).
PubMed link      E-mail link

Reference Number: 412
Wolnicka-Glubisz A, Noonan FP. Neonatal susceptibility to UV induced cutaneous malignant melanoma in a mouse model. Photochem Photobiol Sci. 5 254-60 (2006)
PubMed link      E-mail link

Reference Number: 524
Tormo D, Ferrer A, Gaffal E, Wenzel J, Basner-Tschakarjan E, Steitz J, Heukamp LC, Gütgemann I, Buettner R, Malumbres M, Barbacid M, Merlino G, Tüting T. Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation. Am J Pathol. 169, 665-72 (2006)
PubMed link      E-mail link

Reference Number: 525
Tormo D, Ferrer A, Bosch P, Gaffal E, Basner-Tschakarjan E, Wenzel J, Tüting T. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res. 66, 5427-35 (2006)
PubMed link      E-mail link

Reference Number: 605
Florell SR, Thomas J, Grossman D. Predominant formation of heavily pigmented dermal melanocytomas resembling 'animal-type' melanomas in hepatocyte growth factor (C57BL/6 x C3H)F1 mice following neonatal UV irradiation. J Cutan Pathol. 34, 667-74 (2007)
PubMed link      E-mail link

Reference Number: 868
Kenessey I, Keszthelyi M, Krámer Z, Berta J, Adám A, Dobos J, Mildner M, Flachner B, Cseh S, Barna G, Szokol B, Orfi L, Kéri G, Döme B, Klepetko W, Tímár J, Tóvári J. Inhibition of c-Met with the specific small molecule tyrosine kinase inhibitor SU11274 decreases growth and metastasis formation of experimental human melanoma. Curr Cancer Drug Targets. 10, 332-42 (2010)
PubMed link      E-mail link

Reference Number: 1277
Jarrett SG, Novak M, Harris N, Merlino G, Slominski A, Kaetzel DM. NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma. Clin Exp Metastasis. 30, 25-36 (2013)
PubMed link      E-mail link

Reference Number: 1606
Wolnicka-Glubisz A, Strickland FM, Wielgus A, Anver M, Merlino G, De Fabo EC, Noonan FP. A melanin-independent interaction between Mc1r and Met signaling pathways is required for HGF-dependent melanoma. Int J Cancer. 136, 752-60 (2015)
PubMed link      E-mail link

Therapeutic Development

Reference Number: 22
Jakubczak, J. L., LaRochelle, W. J. & Merlino, G. NK1, a natural splice variant of hepatocyte growth factor/scatter factor, is a partial agonist in vivo. Mol Cell Biol 18, 1275-83. (1998).
PubMed link      E-mail link

Reference Number: 38
Fazekas, K., Raso, E., Zarandi, M., Dudas, J. & Timar, J. Basic HGF-like peptides inhibit generation of liver metastases in murine and human tumor models. Anticancer Res 22, 2575-9 (2002).
PubMed link      E-mail link

Reference Number: 868
Kenessey I, Keszthelyi M, Krámer Z, Berta J, Adám A, Dobos J, Mildner M, Flachner B, Cseh S, Barna G, Szokol B, Orfi L, Kéri G, Döme B, Klepetko W, Tímár J, Tóvári J. Inhibition of c-Met with the specific small molecule tyrosine kinase inhibitor SU11274 decreases growth and metastasis formation of experimental human melanoma. Curr Cancer Drug Targets. 10, 332-42 (2010)
PubMed link      E-mail link

Reference Number: 873
Yamamoto BJ, Elias PD, Masino JA, Hudson BD, McCoy AT, Anderson ZJ, Varnum MD, Sardinia MF, Wright JW, Harding JW. The angiotensin IV analog Nle-Tyr-Leu-psi-(CH2-NH2)3-4-His-Pro-Phe (norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J Pharmacol Exp Ther. 333, 161-73 (2010)
PubMed link      E-mail link

Reference Number: 880
Puri N, Ahmed S, Janamanchi V, Tretiakova M, Zumba O, Krausz T, Jagadeeswaran R, Salgia R. c-Met is a potentially new therapeutic target for treatment of human melanoma. Clin Cancer Res. 13, 2246-53 (2007)
PubMed link      E-mail link

Reference Number: 1139
Vergani E, Vallacchi V, Frigerio S, Deho P, Mondellini P, Perego P, Cassinelli G, Lanzi C, Testi MA, Rivoltini L, Bongarzone I, Rodolfo M. Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. Neoplasia. 13, 1132-42 (2011)
PubMed link      E-mail link

Reference Number: 1182
Kawas LH, McCoy AT, Yamamoto BJ, Wright JW, Harding JW. Development of angiotensin IV analogs as hepatocyte growth factor/Met modifiers. J Pharmacol Exp Ther. 340, 539-48 (2012)
PubMed link      E-mail link

Reference Number: 1206
Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487, 500-4 (2012)
PubMed link      E-mail link

Reference Number: 1207
Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 487, 505-9 (2012)
PubMed link      E-mail link

Reference Number: 1233
Samadi AK, Cohen SM, Mukerji R, Chaguturu V, Zhang X, Timmermann BN, Cohen MS, Person EA. Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumour Biol. 33, 1179-89 (2012)
PubMed link      E-mail link

Reference Number: 1478
Jubb AM, Ribas A, Sosman JA, McArthur GA, Yan Y, Rost S, Zhao S, Koeppen H. Impact of MET expression on outcome in BRAF(V600E/K) advanced melanoma. Histopathology. 63, 351-61 (2013)
PubMed link      E-mail link

Reference Number: 1546
Surriga O, Rajasekhar VK, Ambrosini G, Dogan Y, Huang R, Schwartz GK. Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model. Mol Cancer Ther. 12, 2817-26 (2014)
PubMed link      E-mail link

Reference Number: 1664
Etnyre D, Stone AL, Fong JT, Jacobs RJ, Uppada SB, Botting GM, Rajanna S, Moravec DN, Shambannagari MR, Crees Z, Girard J, Bertram C, Puri N. Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy. Cancer Biol Ther. 15, 1129-41 (2015)
PubMed link      E-mail link

Reference Number: 1796
Yeh I, Botton T, Talevich E, Shain AH, Sparatta AJ, de la Fouchardiere A, Mully TW, North JP, Garrido MC, Gagnon A, Vemula SS, McCalmont TH, LeBoit PE, Bastian BC. Activating MET kinase rearrangements in melanoma and Spitz tumours. Nat Commun. 27, 7174 (2015)
PubMed link      E-mail link

Reviews

Cancer Type: Mesothelioma

HGF/SF expression

Reference Number: 89
Harvey, P. et al. Immunoreactivity for hepatocyte growth factor/scatter factor and its receptor, met, in human lung carcinomas and malignant mesotheliomas. J Pathol 180, 389-94 (1996).
PubMed link      E-mail link

Reference Number: 211
Tolnay, E. et al. Hepatocyte growth factor/scatter factor and its receptor c-Met are overexpressed and associated with an increased microvessel density in malignant pleural mesothelioma. J Cancer Res Clin Oncol 124, 291-6 (1998).
PubMed link      E-mail link

Reference Number: 424
Cacciotti P, Libener R, Betta P, Martini F, Porta C, Procopio A, Strizzi L, Penengo L, Tognon M, Mutti L, Gaudino G. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A. 98, 12032-7 (2001)
PubMed link      E-mail link

Reference Number: 425
Harvey P, Clark IM, Jaurand MC, Warn RM, Edwards DR. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases. Br J Cancer. 83, 1147-53 (2000)
PubMed link      E-mail link

Reference Number: 426
Thirkettle I, Harvey P, Hasleton PS, Ball RY, Warn RM. Immunoreactivity for cadherins, HGF/SF, met, and erbB-2 in pleural malignant mesotheliomas. Histopathology.  36, 522-8 (2000)
PubMed link      E-mail link

Reference Number: 427
Harvey P, Warn A, Dobbin S, Arakaki N, Daikuhara Y, Jaurand MC, Warn RM. Expression of HGF/SF in mesothelioma cell lines and its effects on cell motility, proliferation and morphology. Br J Cancer. 77, 1052-9 (1998)
PubMed link      E-mail link

Reference Number: 428
Klominek J, Baskin B, Liu Z, Hauzenberger Hepatocyte growth factor/scatter factor stimulates chemotaxis and growth of malignant mesothelioma cells through c-met receptor.D. Int J Cancer. 76, 240-9 (1998)
PubMed link      E-mail link

Reference Number: 797
Suzuki Y, Sakai K, Ueki J, Xu Q, Nakamura T, Shimada H, Nakamura T, Matsumoto K. Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. Int J Cancer. 127, 1948-57 (2010)
PubMed link      E-mail link

Met expression

Reference Number: 211
Tolnay, E. et al. Hepatocyte growth factor/scatter factor and its receptor c-Met are overexpressed and associated with an increased microvessel density in malignant pleural mesothelioma. J Cancer Res Clin Oncol 124, 291-6 (1998).
PubMed link      E-mail link

Reference Number: 212
Klominek, J., Baskin, B., Liu, Z. & Hauzenberger, D. Hepatocyte growth factor/scatter factor stimulates chemotaxis and growth of malignant mesothelioma cells through c-met receptor. Int J Cancer 76, 240-9 (1998).
PubMed link      E-mail link

Reference Number: 213
Thirkettle, I., Harvey, P., Hasleton, P. S., Ball, R. Y. & Warn, R. M. Immunoreactivity for cadherins, HGF/SF, met, and erbB-2 in pleural malignant mesotheliomas. Histopathology 36, 522-8 (2000).
PubMed link      E-mail link

Reference Number: 416
Jagadeeswaran R, Ma PC, Seiwert TY, Jagadeeswaran S, Zumba O, Nallasura V, Ahmed S, Filiberti R, Paganuzzi M, Puntoni R, Kratzke RA, Gordon GJ, Sugarbaker DJ, Bueno R, Janamanchi V, Bindokas VP, Kindler HL, Salgia R. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res. 66, 352-61 (2006)
PubMed link      E-mail link

Reference Number: 417
Mukohara T, Civiello G, Davis IJ, Taffaro ML, Christensen J, Fisher DE, Johnson BE, Janne PA. Inhibition of the met receptor in mesothelioma. Clin Cancer Res. 11, 8122-30 (2005)
PubMed link      E-mail link

Reference Number: 421
Vogelzang NJ, Porta C, Mutti L. New agents in the management of advanced mesothelioma. Semin Oncol. 32, 336-50 (2005)
PubMed link      E-mail link

Reference Number: 423
Zimmerman RL, Fogt F. Evaluation of the c-Met immunostain to detect malignant cells in body cavity effusions. Oncol Rep. 8, 1347-50 (2001)
PubMed link      E-mail link

Reference Number: 424
Cacciotti P, Libener R, Betta P, Martini F, Porta C, Procopio A, Strizzi L, Penengo L, Tognon M, Mutti L, Gaudino G. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A. 98, 12032-7 (2001)
PubMed link      E-mail link

Reference Number: 426
Thirkettle I, Harvey P, Hasleton PS, Ball RY, Warn RM. Immunoreactivity for cadherins, HGF/SF, met, and erbB-2 in pleural malignant mesotheliomas. Histopathology.  36, 522-8 (2000)
PubMed link      E-mail link

Reference Number: 428
Klominek J, Baskin B, Liu Z, Hauzenberger Hepatocyte growth factor/scatter factor stimulates chemotaxis and growth of malignant mesothelioma cells through c-met receptor.D. Int J Cancer. 76, 240-9 (1998)
PubMed link      E-mail link

Reference Number: 797
Suzuki Y, Sakai K, Ueki J, Xu Q, Nakamura T, Shimada H, Nakamura T, Matsumoto K. Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. Int J Cancer. 127, 1948-57 (2010)
PubMed link      E-mail link

Reference Number: 1129
Brevet M, Shimizu S, Bott MJ, Shukla N, Zhou Q, Olshen AB, Rusch V, Ladanyi M. Coactivation of receptor tyrosine kinases in malignant mesothelioma as a rationale for combination targeted therapy. J Thorac Oncol. 6, 864-74 (2011)
PubMed link      E-mail link

Reference Number: 1147
Levallet G, Vaisse-Lesteven M, Le Stang N, Ilg AG, Brochard P, Astoul P, Pairon JC, Bergot E, Zalcman G, Galateau-Sallé F. Plasma cell membrane localization of c-MET predicts longer survival in patients with malignant mesothelioma: a series of 157 cases from the MESOPATH Group. J Thorac Oncol. 7, 599-606 (2012)
PubMed link      E-mail link

Reference Number: 1348
Lee YJ1, Lee YJ, Im JH, Won SY, Kim YB, Cho MK, Nam HS, Choi YJ, Lee SH. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells. Food Chem Toxicol. 52, 61-8 (2013)
PubMed link      E-mail link

Reference Number: 1398
Tanaka N1, Toyooka S, Soh J, Tsukuda K, Shien K, Furukawa M, Muraoka T, Maki Y, Ueno T, Yamamoto H, Asano H, Otsuki T, Miyoshi S. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 29, 2169-74 (2013)
PubMed link      E-mail link

Reference Number: 1669
Deng XB, Xiao L, Wu Y, Jin F, Mossman B, Testa JR, Xiao GH. Inhibition of mesothelioma cancer stem-like cells with adenovirus-mediated NK4 gene therapy. Int J Cancer. 137, 481-90 (2015)
PubMed link      E-mail link

Reference Number: 1702
Kanteti R, Dhanasingh I, Kawada I, Lennon FE, Arif Q, Bueno R, Hasina R, Husain AN, Vigneswaran W, Seiwert T, Kindler HL, Salgia R. MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS One. 9(9):e105919 (2014)
PubMed link      E-mail link

Poor Prognosis

Reference Number: 416
Jagadeeswaran R, Ma PC, Seiwert TY, Jagadeeswaran S, Zumba O, Nallasura V, Ahmed S, Filiberti R, Paganuzzi M, Puntoni R, Kratzke RA, Gordon GJ, Sugarbaker DJ, Bueno R, Janamanchi V, Bindokas VP, Kindler HL, Salgia R. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res. 66, 352-61 (2006)
PubMed link      E-mail link

Reference Number: 1147
Levallet G, Vaisse-Lesteven M, Le Stang N, Ilg AG, Brochard P, Astoul P, Pairon JC, Bergot E, Zalcman G, Galateau-Sallé F. Plasma cell membrane localization of c-MET predicts longer survival in patients with malignant mesothelioma: a series of 157 cases from the MESOPATH Group. J Thorac Oncol. 7, 599-606 (2012)
PubMed link      E-mail link

Mutation of Met

Reference Number: 986
Graveel CR, DeGroot JD, Sigler RE, Vande Woude GF. Germline met mutations in mice reveal mutation- and background-associated differences in tumor profiles. PLoS One. 5, e13586 (2010)
PubMed link      E-mail link

In vitro studies

Reference Number: 212
Klominek, J., Baskin, B., Liu, Z. & Hauzenberger, D. Hepatocyte growth factor/scatter factor stimulates chemotaxis and growth of malignant mesothelioma cells through c-met receptor. Int J Cancer 76, 240-9 (1998).
PubMed link      E-mail link

Reference Number: 214
Cacciotti, P. et al. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A 98, 12032-7 (2001).
PubMed link      E-mail link

Reference Number: 215
Warn, R. et al. HGF/SF induces mesothelial cell migration and proliferation by autocrine and paracrine pathways. Exp Cell Res 267, 258-66 (2001).
PubMed link      E-mail link

Reference Number: 272
Ramos-Nino ME, Scapoli L, Martinelli M, Land S, Mossman BT. Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res 63:3539-45 (2003).
PubMed link      E-mail link

Reference Number: 422
Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A, Jhanwar SC, Mossman BT, Kane AB, Testa JR. Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene. 24, 6080-9 (2005)
PubMed link      E-mail link

Reference Number: 424
Cacciotti P, Libener R, Betta P, Martini F, Porta C, Procopio A, Strizzi L, Penengo L, Tognon M, Mutti L, Gaudino G. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A. 98, 12032-7 (2001)
PubMed link      E-mail link

Reference Number: 425
Harvey P, Clark IM, Jaurand MC, Warn RM, Edwards DR. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases. Br J Cancer. 83, 1147-53 (2000)
PubMed link      E-mail link

Reference Number: 427
Harvey P, Warn A, Dobbin S, Arakaki N, Daikuhara Y, Jaurand MC, Warn RM. Expression of HGF/SF in mesothelioma cell lines and its effects on cell motility, proliferation and morphology. Br J Cancer. 77, 1052-9 (1998)
PubMed link      E-mail link

Reference Number: 584
Ramos-Nino ME, Blumen SR, Sabo-Attwood T, Pass H, Carbone M, Testa J, Altomare DA, Mossman BT. HGF Mediates Cell Proliferation of Human Mesothelioma Cells Through a PI3K/MEK5/Fra-1 Pathway. Am J Respir Cell Mol Biol. 38, 209-17 (2008)
PubMed link      E-mail link

Reference Number: 603
Cao X, Littlejohn J, Rodarte C, Zhang L, Martino B, Rascoe P, Hamid K, Jupiter D, Smythe WR. Up-regulation of Bcl-xl by hepatocyte growth factor in human mesothelioma cells involves ETS transcription factors. Am J Pathol. 175, 2207-16 (2009)
PubMed link      E-mail link

Reference Number: 661
Kawaguchi K, Murakami H, Taniguchi T, Fujii M, Kawata S, Fukui T, Kondo Y, Osada H, Usami N, Yokoi K, Ueda Y, Yatabe Y, Ito M, Horio Y, Hida T, Sekido Y. Combined inhibition of MET and EGFR suppresses proliferation of malignant mesothelioma cells. Carcinogenesis. 30, 1097-105 (2009)
PubMed link      E-mail link

Reference Number: 797
Suzuki Y, Sakai K, Ueki J, Xu Q, Nakamura T, Shimada H, Nakamura T, Matsumoto K. Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. Int J Cancer. 127, 1948-57 (2010)
PubMed link      E-mail link

Animal models

Reference Number: 986
Graveel CR, DeGroot JD, Sigler RE, Vande Woude GF. Germline met mutations in mice reveal mutation- and background-associated differences in tumor profiles. PLoS One. 5, e13586 (2010)
PubMed link      E-mail link

Reference Number: 1468
Menges CW, Kadariya Y, Altomare D, Talarchek J, Neumann-Domer E, Wu Y, Xiao GH, Shapiro IM, Kolev VN, Pachter JA, Klein-Szanto AJ, Testa JR. Tumor suppressor alterations cooperate to drive aggressive mesotheliomas with enriched cancer stem cells via a p53-miR-34a-c-Met axis. Cancer Res. 74, 1261-71 (2014)
PubMed link      E-mail link

Reference Number: 1702
Kanteti R, Dhanasingh I, Kawada I, Lennon FE, Arif Q, Bueno R, Hasina R, Husain AN, Vigneswaran W, Seiwert T, Kindler HL, Salgia R. MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS One. 9(9):e105919 (2014)
PubMed link      E-mail link

Therapeutic Development

Reference Number: 417
Mukohara T, Civiello G, Davis IJ, Taffaro ML, Christensen J, Fisher DE, Johnson BE, Janne PA. Inhibition of the met receptor in mesothelioma. Clin Cancer Res. 11, 8122-30 (2005)
PubMed link      E-mail link

Reference Number: 421
Vogelzang NJ, Porta C, Mutti L. New agents in the management of advanced mesothelioma. Semin Oncol. 32, 336-50 (2005)
PubMed link      E-mail link

Reference Number: 661
Kawaguchi K, Murakami H, Taniguchi T, Fujii M, Kawata S, Fukui T, Kondo Y, Osada H, Usami N, Yokoi K, Ueda Y, Yatabe Y, Ito M, Horio Y, Hida T, Sekido Y. Combined inhibition of MET and EGFR suppresses proliferation of malignant mesothelioma cells. Carcinogenesis. 30, 1097-105 (2009)
PubMed link      E-mail link

Reference Number: 725
Cipriani NA, Abidoye OO, Vokes E, Salgia R. MET as a target for treatment of chest tumors. Lung Cancer. 63, 169-79. Epub 2008 Jul 30 (2009)
PubMed link      E-mail link

Reference Number: 1129
Brevet M, Shimizu S, Bott MJ, Shukla N, Zhou Q, Olshen AB, Rusch V, Ladanyi M. Coactivation of receptor tyrosine kinases in malignant mesothelioma as a rationale for combination targeted therapy. J Thorac Oncol. 6, 864-74 (2011)
PubMed link      E-mail link

Reference Number: 1702
Kanteti R, Dhanasingh I, Kawada I, Lennon FE, Arif Q, Bueno R, Hasina R, Husain AN, Vigneswaran W, Seiwert T, Kindler HL, Salgia R. MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS One. 9(9):e105919 (2014)
PubMed link      E-mail link

Reference Number: 1756
Leon LG, Gemelli M, Sciarrillo R, Avan A, Funel N, Giovannetti E. Synergistic activity of the c-Met and tubulin inhibitor tivantinib (ARQ197) with pemetrexed in mesothelioma cells. Curr Drug Targets. 15, 1331-40 (2014)
PubMed link      E-mail link

Reviews

Reference Number: 756
Cipriani NA, Abidoye OO, Vokes E, Salgia R. MET as a target for treatment of chest tumors. Lung Cancer. 63, 169-79 (2009)
PubMed link      E-mail link

Cancer Type: Wilms' Tumor

HGF/SF expression

Reference Number: 216
Alami, J., Williams, B. R. & Yeger, H. Expression and localization of HGF and met in Wilms' tumours. J Pathol 196, 76-84. (2002).
PubMed link      E-mail link

Reference Number: 274
Higinbotham KG, Karavanova ID, Diwan BA, Perantoni AO. Deficient expression of mRNA for the putative inductive factor bone morphogenetic protein-7 in chemically initiated rat nephroblastomas. Mol Carcinog. 23, 53-61 (1998)
PubMed link      E-mail link

Reference Number: 732
Vuononvirta R, Sebire NJ, Messahel B, Perusinghe N, Reis-Filho JS, Pritchard-Jones K, Vujanic GM, Jones C. Expression of hepatocyte growth factor and its receptor met in Wilms' tumors and nephrogenic rests reflects their roles in kidney development. Clin Cancer Res. 15, 2723-30 (2009)
PubMed link      E-mail link

Met expression

Reference Number: 216
Alami, J., Williams, B. R. & Yeger, H. Expression and localization of HGF and met in Wilms' tumours. J Pathol 196, 76-84. (2002).
PubMed link      E-mail link

Reference Number: 375
Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, Pines M. Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol. 174, 1527-31 (2005)
PubMed link      E-mail link

Reference Number: 732
Vuononvirta R, Sebire NJ, Messahel B, Perusinghe N, Reis-Filho JS, Pritchard-Jones K, Vujanic GM, Jones C. Expression of hepatocyte growth factor and its receptor met in Wilms' tumors and nephrogenic rests reflects their roles in kidney development. Clin Cancer Res. 15, 2723-30 (2009)
PubMed link      E-mail link

Poor Prognosis

Mutation of Met

In vitro studies

Animal models

Reference Number: 375
Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, Pines M. Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol. 174, 1527-31 (2005)
PubMed link      E-mail link

Therapeutic Development

Reference Number: 375
Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, Pines M. Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol. 174, 1527-31 (2005)
PubMed link      E-mail link

Reviews