Reference(s)
Click here to return to the Reference Table

Category: Hematopoietic Malignancies


Cancer Type: Multiple Myeloma

HGF/SF expression

Reference Number: 160
Borset, M., Hjorth-Hansen, H., Seidel, C., Sundan, A. & Waage, A. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88, 3998-4004 (1996).
PubMed link      E-mail link

Reference Number: 161
Borset, M., Seidel, C., Hjorth-Hansen, H., Waage, A. & Sundan, A. The role of hepatocyte growth factor and its receptor c-Met in multiple myeloma and other blood malignancies. Leuk Lymphoma 32, 249-56 (1999).
PubMed link      E-mail link

Reference Number: 162
Derksen, P. W. et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764-74. (2003).
PubMed link      E-mail link

Reference Number: 163
Seidel, C., Borset, M., Hjorth-Hansen, H., Sundan, A. & Waage, A. Role of hepatocyte growth factor and its receptor c-met in multiple myeloma. Med Oncol 15, 145-53 (1998).
PubMed link      E-mail link

Reference Number: 164
Seidel, C. et al. Hepatocyte growth factor in myeloma patients treated with high-dose chemotherapy. Br J Haematol 119, 672-6 (2002).
PubMed link      E-mail link

Reference Number: 165
Turesson, I. et al. Prognostic evaluation in multiple myeloma: an analysis of the impact of new prognostic factors. Br J Haematol 106, 1005-12 (1999).
PubMed link      E-mail link

Reference Number: 166
Seidel, C. et al. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood 91, 806-12 (1998).
PubMed link      E-mail link

Reference Number: 266
Alexandrakis MG, Passam FH, Sfiridaki A, Kandidaki E, Roussou P, Kyriakou DS. Elevated serum concentration of hepatocyte growth factor in patients with multiple myeloma: correlation with markers of disease activity. Am J Hematol 72:229-33 (2003).
PubMed link      E-mail link

Reference Number: 267
Urba ska-Rys H, Wierzbowska A, Robak T. Circulating angiogenic cytokines in multiple myeloma and related disorders. Eur Cytokine Netw 14:40-51 (2003).
PubMed link      E-mail link

Reference Number: 268
Hsiao LT, Lin JT, Yu IT, Chiou TJ, Liu JH, Yen CC, Wang WS, Chen PM. High serum hepatocyte growth factor level in patients with non-Hodgkin's lymphoma. Eur J Maematol 70:282-9 (2003).
PubMed link      E-mail link

Reference Number: 302
Tjin EP, Derksen PW, Kataoka H, Spaargaren M, Pals ST. Multiple myeloma cells catalyze hepatocyte growth factor (HGF) activation by secreting the serine protease HGF-activator. Blood 104, 2172-5 (2004)
PubMed link      E-mail link

Reference Number: 303
Vande Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B, Van Riet I. Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18, 976-82 (2004)
PubMed link      E-mail link

Reference Number: 429
Tjin EP, Groen RW, Vogelzang I, Derksen PW, Klok MD, Meijer HP, van Eeden S, Pals ST, Spaargaren M. Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood107, 760-8 (2006)
PubMed link      E-mail link

Reference Number: 430
Holt RU, Baykov V, Ro TB, Brabrand S, Waage A, Sundan A, Borset M. Human myeloma cells adhere to fibronectin in response to hepatocyte growth factor. Haematologica. 90, 436 (2005)
PubMed link      E-mail link

Reference Number: 432
Andersen NF, Standal T, Nielsen JL, Heickendorff L, Borset M, Sorensen FB, Abildgaard N. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol. 128, 210-7 (2005)
PubMed link      E-mail link

Reference Number: 514
Standal T, Abildgaard N, Fagerli UM, Stordal B, Hjertner O, Borset M, Sundan A. HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood. 109, 3024-30 (2007)
PubMed link      E-mail link

Reference Number: 515
Kara IO, Sahin B, Gunesacar R, Unsal C. Clinical significance of hepatocyte growth factor, platelet-derived growth factor-AB, and transforming growth factor-alpha in bone marrow and peripheral blood of patients with multiple myeloma. Adv Ther. 23, 635-45 (2006)
PubMed link      E-mail link

Reference Number: 552
Alexandrakis MG, Sfiridaki A, Miyakis S, Pappa C, Kandidaki E, Alegakis A, Margioris AN. Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta. 379, 31-5 (2007)
PubMed link      E-mail link

Reference Number: 810
Pour L, Svachova H, Adam Z, Mikulkova Z, Buresova L, Kovarova L, Buchler T, Penka M, Vorlicek J, Hajek R. Pretreatment hepatocyte growth factor and thrombospondin-1 levels predict response to high-dose chemotherapy for multiple myeloma. Neoplasma. 57, 29-34 (2010)
PubMed link      E-mail link

Reference Number: 812
Wader KF, Fagerli UM, Holt RU, Stordal B, Børset M, Sundan A, Waage A. Elevated serum concentrations of activated hepatocyte growth factor activator in patients with multiple myeloma. Eur J Haematol. 81, 380-3 (2008)
PubMed link      E-mail link

Reference Number: 813
Zdzisinska B, Bojarska-Junak A, Dmoszynska A, Kandefer-Szerszen M. Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz). 56, 207-21 (2008)
PubMed link      E-mail link

Reference Number: 997
Purdue MP, Lan Q, Menashe I, Zheng T, Zhang Y, Yeager M, Hosgood HD 3rd, Zahm SH, Chanock SJ, Rothman N, Baris D. Variation in innate immunity genes and risk of multiple myeloma. Hematol Oncol. 29, 42-6 (2011)
PubMed link      E-mail link

Reference Number: 1036
Akkök CA, Hervig T, Stamnesfet S, Nesthus I, Melve GK, Lassalle P, Bruserud O. Effects of peripheral blood stem cell apheresis on systemic cytokine levels in patients with multiple myeloma. Cytotherapy. 13, 1259-68 (2011)
PubMed link      E-mail link

Reference Number: 1286
Bonanno G, Mariotti A, Procoli A, Folgiero V, Natale D, De Rosa L, Majolino I, Novarese L, Rocci A, Gambella M, Ciciarello M, Scambia G, Palumbo A, Locatelli F, De Cristofaro R, Rutella S. Indoleamine 2,3-dioxygenase 1 (IDO1) activity correlates with immune system abnormalities in multiple myeloma. J Transl Med. 10, 247 (2012)
PubMed link      E-mail link

Reference Number: 1299
Tsirakis G, Pappa CA, Psarakis FE, Fragioudaki M, Tsioutis C, Stavroulaki E, Boula A, Alexandrakis MG. Serum concentrations and clinical significance of soluble CD40 ligand in patients with multiple myeloma. Med Oncol. 29, 2396-401 (2012)
PubMed link      E-mail link

Reference Number: 1304
Tsirakis G, Pappa CA, Kaparou M, Boula A, Katsomitrou V, Xekalou A, Kyriakaki S, Alexandrakis MG. The relationship between soluble receptor of interleukin-6 with angiogenic cytokines and proliferation markers in multiple myeloma. Tumour Biol. 34, 859-64 (2013)
PubMed link      E-mail link

Reference Number: 1330
Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N. Hepatocyte growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone disease. Br J Haematol. 161, 373-82 (2013)
PubMed link      E-mail link

Reference Number: 1533
Phillip CJ, Zaman S, Shentu S, Balakrishnan K, Zhang J, Baladandayuthapani V, Taverna P, Redkar S, Wang M, Stellrecht CM, Gandhi V. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines. J Hematol Oncol. 6, 92 (2013)
PubMed link      E-mail link

Reference Number: 1653
Ferrucci A, Moschetta M, Frassanito MA, Berardi S, Catacchio I, Ria R, Racanelli V, Caivano A, Solimando AG, Vergara D, Maffia M, Latorre D, Rizzello A, Zito A, Ditonno P, Maiorano E, Ribatti D, Vacca A. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res. 20, 5796-807 (2014)
PubMed link      E-mail link

Reference Number: 1790
Andersen NF, Kristensen IB, Preiss BS, Christensen JH, Abildgaard N Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis. Eur J Haematol. 95, 211-7 (2015)
PubMed link      E-mail link

Reference Number: 1791
Abraham J, Desport E, Rigaud C, Marin B, Bender S, Lacombe C, Moreau S, Yagoubi F, Bordessoule D, Lavergne D, Bridoux F, Jaccard A Hepatocyte growth factor measurement in AL amyloidosis. Amyloid. 22, 112-6 (2015)
PubMed link      E-mail link

Met expression

Reference Number: 160
Borset, M., Hjorth-Hansen, H., Seidel, C., Sundan, A. & Waage, A. Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88, 3998-4004 (1996).
PubMed link      E-mail link

Reference Number: 161
Borset, M., Seidel, C., Hjorth-Hansen, H., Waage, A. & Sundan, A. The role of hepatocyte growth factor and its receptor c-Met in multiple myeloma and other blood malignancies. Leuk Lymphoma 32, 249-56 (1999).
PubMed link      E-mail link

Reference Number: 162
Derksen, P. W. et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764-74. (2003).
PubMed link      E-mail link

Reference Number: 163
Seidel, C., Borset, M., Hjorth-Hansen, H., Sundan, A. & Waage, A. Role of hepatocyte growth factor and its receptor c-met in multiple myeloma. Med Oncol 15, 145-53 (1998).
PubMed link      E-mail link

Reference Number: 448
Stellrecht CM, Phillip CJ, Cervantes-Gomez F, Gandhi V. Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase. Cancer Res. 67, 9913-20 (2007)
PubMed link      E-mail link

Reference Number: 811
Hov H, Tian E, Holien T, Holt RU, Våtsveen TK, Fagerli UM, Waage A, Børset M, Sundan A. c-Met signaling promotes IL-6-induced myeloma cell proliferation. Eur J Haematol. 82, 277-87 (2009)
PubMed link      E-mail link

Reference Number: 1118
Wader KF, Fagerli UM, Holt RU, Børset M, Sundan A, Waage A. Soluble c-Met in serum of patients with multiple myeloma: correlation with clinical parameters. Eur J Haematol. 87, 394-9 (2011)
PubMed link      E-mail link

Reference Number: 1138
Wader KF, Fagerli UM, Børset M, Lydersen S, Hov H, Sundan A, Bofin A, Waage A. Immunohistochemical analysis of hepatocyte growth factor and c-Met in plasma cell disease. Histopathology. 60, 443-51 (2012)
PubMed link      E-mail link

Reference Number: 1156
Que W, Chen J, Chuang M, Jiang D. Knockdown of c-Met enhances sensitivity to bortezomib in human multiple myeloma U266 cells via inhibiting Akt/mTOR activity. APMIS. 120, 195-203 (2012)
PubMed link      E-mail link

Reference Number: 1330
Kristensen IB, Christensen JH, Lyng MB, Møller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N. Hepatocyte growth factor pathway upregulation in the bone marrow microenvironment in multiple myeloma is associated with lytic bone disease. Br J Haematol. 161, 373-82 (2013)
PubMed link      E-mail link

Reference Number: 1421
Rocci A1, Gambella M, Aschero S, Baldi I, Trusolino L, Cavallo F, Gay F, Larocca A, Magarotto V, Omedè P, Isaia G, Bertotti A, Liberati AM, Catalano L, De Rosa L, Musto P, Vallone R, Falcone A, Drandi D, Ladetto M, Comoglio PM, Boccadoro M, Palumbo A. MET dysregulation is a hallmark of aggressive disease in multiple myeloma patients. Br J Haematol. 164, 841-50 (2014)
PubMed link      E-mail link

Reference Number: 1430
Moschetta M1, Basile A, Ferrucci A, Frassanito MA, Rao L, Ria R, Solimando AG, Giuliani N, Boccarelli A, Fumarola F, Coluccia M, Rossini B, Ruggieri S, Nico B, Maiorano E, Ribatti D, Roccaro AM, Vacca A. Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin Cancer Res. 19, 4371-82 (2013)
PubMed link      E-mail link

Reference Number: 1533
Phillip CJ, Zaman S, Shentu S, Balakrishnan K, Zhang J, Baladandayuthapani V, Taverna P, Redkar S, Wang M, Stellrecht CM, Gandhi V. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines. J Hematol Oncol. 6, 92 (2013)
PubMed link      E-mail link

Reference Number: 1653
Ferrucci A, Moschetta M, Frassanito MA, Berardi S, Catacchio I, Ria R, Racanelli V, Caivano A, Solimando AG, Vergara D, Maffia M, Latorre D, Rizzello A, Zito A, Ditonno P, Maiorano E, Ribatti D, Vacca A. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res. 20, 5796-807 (2014)
PubMed link      E-mail link

Poor Prognosis

Reference Number: 163
Seidel, C., Borset, M., Hjorth-Hansen, H., Sundan, A. & Waage, A. Role of hepatocyte growth factor and its receptor c-met in multiple myeloma. Med Oncol 15, 145-53 (1998).
PubMed link      E-mail link

Reference Number: 164
Seidel, C. et al. Hepatocyte growth factor in myeloma patients treated with high-dose chemotherapy. Br J Haematol 119, 672-6 (2002).
PubMed link      E-mail link

Reference Number: 165
Turesson, I. et al. Prognostic evaluation in multiple myeloma: an analysis of the impact of new prognostic factors. Br J Haematol 106, 1005-12 (1999).
PubMed link      E-mail link

Reference Number: 515
Kara IO, Sahin B, Gunesacar R, Unsal C. Clinical significance of hepatocyte growth factor, platelet-derived growth factor-AB, and transforming growth factor-alpha in bone marrow and peripheral blood of patients with multiple myeloma. Adv Ther. 23, 635-45 (2006)
PubMed link      E-mail link

Reference Number: 809
Ludek P, Hana S, Zdenek A, Martina A, Dana K, Tomas B, Lucie K, Marta K, Jaroslav M, Miroslav P, Jiri V, Roman H. Treatment response to bortezomib in multiple myeloma correlates with plasma hepatocyte growth factor concentration and bone marrow thrombospondin concentration. Eur J Haematol. 84, 332-6 (2010)
PubMed link      E-mail link

Reference Number: 810
Pour L, Svachova H, Adam Z, Mikulkova Z, Buresova L, Kovarova L, Buchler T, Penka M, Vorlicek J, Hajek R. Pretreatment hepatocyte growth factor and thrombospondin-1 levels predict response to high-dose chemotherapy for multiple myeloma. Neoplasma. 57, 29-34 (2010)
PubMed link      E-mail link

Mutation of Met

In vitro studies

Reference Number: 162
Derksen, P. W. et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17, 764-74. (2003).
PubMed link      E-mail link

Reference Number: 167
Borset, M. et al. Concomitant expression of hepatocyte growth factor/scatter factor and the receptor c-MET in human myeloma cell lines. J Biol Chem 271, 24655-61 (1996).
PubMed link      E-mail link

Reference Number: 168
Derksen, P. W. et al. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99, 1405-10. (2002).
PubMed link      E-mail link

Reference Number: 169
Hjertner, O. et al. Hepatocyte growth factor (HGF) induces interleukin-11 secretion from osteoblasts: a possible role for HGF in myeloma-associated osteolytic bone disease. Blood 94, 3883-8 (1999).
PubMed link      E-mail link

Reference Number: 170
Seidel, C. et al. High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 96, 3139-46 (2000).
PubMed link      E-mail link

Reference Number: 448
Stellrecht CM, Phillip CJ, Cervantes-Gomez F, Gandhi V. Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase. Cancer Res. 67, 9913-20 (2007)
PubMed link      E-mail link

Reference Number: 514
Standal T, Abildgaard N, Fagerli UM, Stordal B, Hjertner O, Borset M, Sundan A. HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood. 109, 3024-30 (2007)
PubMed link      E-mail link

Reference Number: 552
Alexandrakis MG, Sfiridaki A, Miyakis S, Pappa C, Kandidaki E, Alegakis A, Margioris AN. Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta. 379, 31-5 (2007)
PubMed link      E-mail link

Reference Number: 814
Phillip CJ, Stellrecht CM, Nimmanapalli R, Gandhi V. Targeting MET transcription as a therapeutic strategy in multiple myeloma. Cancer Chemother Pharmacol. 63, 587-97 (2009)
PubMed link      E-mail link

Reference Number: 815
Zlei M, Egert S, Wider D, Ihorst G, Wäsch R, Engelhardt M. Characterization of in vitro growth of multiple myeloma cells. Exp Hematol. 35, 1550-61 (2007)
PubMed link      E-mail link

Reference Number: 956
Que W, Chen J. Knockdown of c-Met inhibits cell proliferation and invasion and increases chemosensitivity to doxorubicin in human multiple myeloma U266 cells in vitro. Mol Med Report. 4,343-9 (2011)
PubMed link      E-mail link

Reference Number: 999
Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD. Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem. 286, 6490-9 (2011)
PubMed link      E-mail link

Reference Number: 1351
Rø TB1, Holien T, Fagerli UM, Hov H, Misund K, Waage A, Sundan A, Holt RU, Børset M. HGF and IGF-1 synergize with SDF-1a in promoting migration of myeloma cells by cooperative activation of p21-activated kinase. Exp Hematol. 41, 646-55 (2013)
PubMed link      E-mail link

Reference Number: 1479
Kristensen IB, Pedersen L, Rø TB, Christensen JH, Lyng MB, Rasmussen LM, Ditzel HJ, Børset M, Abildgaard N. Decorin is down-regulated in multiple myeloma and MGUS bone marrow plasma and inhibits HGF-induced myeloma plasma cell viability and migration. Eur J Haematol. 91, 196-200 (2013)
PubMed link      E-mail link

Animal models

Reference Number: 171
Hjorth-Hansen, H. et al. Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. J Bone Miner Res 14, 256-63. (1999).
PubMed link      E-mail link

Therapeutic Development

Reference Number: 288
Hov H, Holt RU, Ro TB, Fagerli UM, Hjorth-Hansen H, Baykov V, Christensen JG, Waage A, Sundan A, Borset M. A selective c-met inhibitor blocks an autocrine hepatocyte growth factor growth loop in ANBL-6 cells and prevents migration and adhesion of myeloma cells. Clin Cancer Res 10, 6686-94 (2004)
PubMed link      E-mail link

Reference Number: 513
Du W, Hattori Y, Yamada T, Matsumoto K, Nakamura T, Sagawa M, Otsuki T, Niikura T, Nukiwa T, Ikeda Y. NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells: molecular targeting of angiogenic growth factor. Blood. 109, 3042-9 (2007)
PubMed link      E-mail link

Reference Number: 809
Ludek P, Hana S, Zdenek A, Martina A, Dana K, Tomas B, Lucie K, Marta K, Jaroslav M, Miroslav P, Jiri V, Roman H. Treatment response to bortezomib in multiple myeloma correlates with plasma hepatocyte growth factor concentration and bone marrow thrombospondin concentration. Eur J Haematol. 84, 332-6 (2010)
PubMed link      E-mail link

Reference Number: 814
Phillip CJ, Stellrecht CM, Nimmanapalli R, Gandhi V. Targeting MET transcription as a therapeutic strategy in multiple myeloma. Cancer Chemother Pharmacol. 63, 587-97 (2009)
PubMed link      E-mail link

Reference Number: 1533
Phillip CJ, Zaman S, Shentu S, Balakrishnan K, Zhang J, Baladandayuthapani V, Taverna P, Redkar S, Wang M, Stellrecht CM, Gandhi V. Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines. J Hematol Oncol. 6, 92 (2013)
PubMed link      E-mail link

Reference Number: 1560
Slørdahl TS, Denayer T, Moen SH, Standal T, Børset M, Ververken C, Rø TB. Anti-c-MET Nanobody - a new potential drug in multiple myeloma treatment. Eur J Haematol. 91, 399-410 (2013)
PubMed link      E-mail link

Reference Number: 1587
Patnaik A, Weiss GJ, Papadopoulos KP, Hofmeister CC, Tibes R, Tolcher A, Isaacs R, Jac J, Han M, Payumo FC, Cotreau MM, Ramanathan RK. Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br J Cancer. 111, 272-80 (2014)
PubMed link      E-mail link

Reference Number: 1845
Zaman S, Shentu S, Yang J, He J, Orlowski RZ, Stellrecht CM, Gandhi V. Targeting the pro-survival protein MET with tivantinib (ARQ 197) inhibits growth of multiple myeloma cells. Neoplasia. 17, 289-300 (2015)
PubMed link      E-mail link

Reviews

Reference Number: 887
Mahtouk K, Tjin EP, Spaargaren M, Pals ST. The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim Biophys Acta. 1806, 208-19 (2010)
PubMed link      E-mail link

Reference Number: 890
Børset M, Seidel C, Hjorth-Hansen H, Waage A, Sundan A. The role of hepatocyte growth factor and its receptor c-Met in multiple myeloma and other blood malignancies. Leuk Lymphoma. 32, 249-56 (1999)
PubMed link      E-mail link

Reference Number: 1875
Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn. 15, 881-93 (2015)
PubMed link      E-mail link

Cancer Type: Lymphomas

HGF/SF expression

Reference Number: 88
Eagles, G. et al. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br J Cancer 73, 377-81 (1996).
PubMed link      E-mail link

Reference Number: 172
Capello, D. et al. The tyrosine kinase receptor met and its ligand HGF are co-expressed and functionally active in HHV-8 positive primary effusion lymphoma. Leukemia 14, 285-91. (2000).
PubMed link      E-mail link

Reference Number: 173
Gaidano, G. et al. Molecular characterization of HHV-8 positive primary effusion lymphoma reveals pathogenetic and histogenetic features of the disease. J Clin Virol 16, 215-24. (2000).
PubMed link      E-mail link

Reference Number: 174
Hsiao, L. T. et al. High serum hepatocyte growth factor level in patients with non- Hodgkin's lymphoma. Eur J Haematol 70, 282-9. (2003).
PubMed link      E-mail link

Reference Number: 175
Weimar, I. S. et al. Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood 89, 990-1000. (1997).
PubMed link      E-mail link

Reference Number: 268
Hsiao LT, Lin JT, Yu IT, Chiou TJ, Liu JH, Yen CC, Wang WS, Chen PM. High serum hepatocyte growth factor level in patients with non-Hodgkin's lymphoma. Eur J Maematol 70:282-9 (2003).
PubMed link      E-mail link

Reference Number: 429
Tjin EP, Groen RW, Vogelzang I, Derksen PW, Klok MD, Meijer HP, van Eeden S, Pals ST, Spaargaren M. Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood107, 760-8 (2006)
PubMed link      E-mail link

Reference Number: 431
Toyama T, Ido A, Sasak H, Maeda K, Yamashita K, Kubuki Y, Suzuki M, Matsuoka H, Tsubouchi H. Possible involvement of neutrophils in a serum level increase of hepatocyte growth factor in non-Hodgkin's lymphoma. Oncol Rep. 13, 439-44 (2005)
PubMed link      E-mail link

Reference Number: 432
Andersen NF, Standal T, Nielsen JL, Heickendorff L, Borset M, Sorensen FB, Abildgaard N. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol. 128, 210-7 (2005)
PubMed link      E-mail link

Reference Number: 434
Tjin EP, Bende RJ, Derksen PW, van Huijstee AP, Kataoka H, Spaargaren M, Pals ST. Follicular dendritic cells catalyze hepatocyte growth factor (HGF) activation in the germinal center microenvironment by secreting the serine protease HGF activator. Immunol. 175, 2807-13 (2005)
PubMed link      E-mail link

Reference Number: 530
Passam FH, Alexandrakis MG, Moschandrea J, Sfiridaki A, Roussou PA, Siafakas NM. Angiogenic molecules in Hodgkin's disease: results from sequential serum analysis. Int J Immunopathol Pharmacol. 19, 161-70 (2006)
PubMed link      E-mail link

Reference Number: 630
Etto L, Lacerda E, Baiocchi O, Silva V, Dalboni M, Alves A, Silva M, Vettore A, Colleoni G. Clinical correlations and prognostic relevance of HGF, VEGF AND FGF expression in Brazilian patients with non-Hodgkin lymphoma. Leuk Lymphoma. 49, 257-64 (2008)
PubMed link      E-mail link

Reference Number: 713
Ria R, Cirulli T, Giannini T, Bambace S, Serio G, Portaluri M, Ribatti D, Vacca A, Dammacco F. Serum levels of angiogenic cytokines decrease after radiotherapy in non-Hodgkin lymphomas. Clin Exp Med. 8,141-5 (2008) Epub 2008 Sep 13
PubMed link      E-mail link

Reference Number: 1149
Secchiero P, Corallini F, Zavan B, Tripodo C, Vindigni V, Zauli G. Mesenchymal stem cells display hepato-protective activity in lymphoma bearing xenografts. Invest New Drugs. 30, 803-7 (2012)
PubMed link      E-mail link

Met expression

Reference Number: 172
Capello, D. et al. The tyrosine kinase receptor met and its ligand HGF are co-expressed and functionally active in HHV-8 positive primary effusion lymphoma. Leukemia 14, 285-91. (2000).
PubMed link      E-mail link

Reference Number: 173
Gaidano, G. et al. Molecular characterization of HHV-8 positive primary effusion lymphoma reveals pathogenetic and histogenetic features of the disease. J Clin Virol 16, 215-24. (2000).
PubMed link      E-mail link

Reference Number: 175
Weimar, I. S. et al. Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood 89, 990-1000. (1997).
PubMed link      E-mail link

Reference Number: 176
Jucker, M. et al. The Met/hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma. Leuk Res 18, 7-16. (1994).
PubMed link      E-mail link

Reference Number: 304
Baek CM, Jeon SH, Jang JJ, Lee BS, Lee JH. Transforming variant of Met receptor confers serum independence and anti-apoptotic property and could be involved in the mouse thymic lymphomagenesis. Exp Mil Med 36, 283-91 (2004)
PubMed link      E-mail link

Reference Number: 429
Tjin EP, Groen RW, Vogelzang I, Derksen PW, Klok MD, Meijer HP, van Eeden S, Pals ST, Spaargaren M. Functional analysis of HGF/MET signaling and aberrant HGF-activator expression in diffuse large B-cell lymphoma. Blood107, 760-8 (2006)
PubMed link      E-mail link

Reference Number: 432
Andersen NF, Standal T, Nielsen JL, Heickendorff L, Borset M, Sorensen FB, Abildgaard N. Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol. 128, 210-7 (2005)
PubMed link      E-mail link

Reference Number: 433
Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C, Warner S, Grogan TM, Miller TP. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther. 4, 1867-79 (2005)
PubMed link      E-mail link

Reference Number: 802
Uddin S, Hussain AR, Ahmed M, Al-Dayel F, Bu R, Bavi P, Al-Kuraya KS. Inhibition of c-MET is a potential therapeutic strategy for treatment of diffuse large B-cell lymphoma. Lab Invest. 90, 1346-56 (2010)
PubMed link      E-mail link

Reference Number: 816
Uddin S, Hussain AR, Ahmed M, Bu R, Ahmed SO, Ajarim D, Al-Dayel F, Bavi P, Al-Kuraya KS. Inhibition of fatty acid synthase suppresses c-Met receptor kinase and induces apoptosis in diffuse large B-cell lymphoma. Mol Cancer Ther. 9, 1244-55 (2010)
PubMed link      E-mail link

Reference Number: 1191
Xu C, Plattel W, van den Berg A, Rüther N, Huang X, Wang M, de Jong D, Vos H, van Imhoff G, Viardot A, Möller P, Poppema S, Diepstra A, Visser L. Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma. Haematologica. 97, 572-8 (2012)
PubMed link      E-mail link

Reference Number: 1338
Huang WT, Chuang SS. High MET gene copy number predicted poor prognosis in primary intestinal diffuse large B-cell lymphoma. Diagn Pathol. 8, 16 (2013)
PubMed link      E-mail link

Reference Number: 1418
Koh YW1, Hwang HS, Jung SJ, Park C, Yoon DH, Suh C, Huh J. Receptor tyrosine kinases MET and RON as prognostic factors in diffuse large B-cell lymphoma patients receiving R-CHOP. Cancer Sci. 104, 1245-51 (2013)
PubMed link      E-mail link

Reference Number: 1429
Wha Koh Y1, Park C, Hyun Yoon D, Suh C, Huh J. MET and MST1R as prognostic factors for classical Hodgkin's lymphoma. Mod Pathol. 26, 1172-82 (2013)
PubMed link      E-mail link

Reference Number: 1455
Kikuma K, Yamada K, Nakamura S, Ogami A, Nimura S, Hirahashi M, Yonemasu H, Urabe S, Naito S, Matsuki Y, Sadahira Y, Takeshita M Detailed clinicopathological characteristics and possible lymphomagenesis of type II intestinal enteropathy-associated T-cell lymphoma in Japan. Hum Pathol. 45, 1276-84 (2014)
PubMed link      E-mail link

Reference Number: 1774
Koh YW, Yoon DH, Suh C, Cha HJ, Huh J Insulin-like growth factor-1 receptor is associated with better prognosis in classical Hodgkin's lymphoma: Correlation with MET expression. Int J Exp Pathol. 96, 232-9 (2015)
PubMed link      E-mail link

Poor Prognosis

Reference Number: 630
Etto L, Lacerda E, Baiocchi O, Silva V, Dalboni M, Alves A, Silva M, Vettore A, Colleoni G. Clinical correlations and prognostic relevance of HGF, VEGF AND FGF expression in Brazilian patients with non-Hodgkin lymphoma. Leuk Lymphoma. 49, 257-64 (2008)
PubMed link      E-mail link

Reference Number: 1338
Huang WT, Chuang SS. High MET gene copy number predicted poor prognosis in primary intestinal diffuse large B-cell lymphoma. Diagn Pathol. 8, 16 (2013)
PubMed link      E-mail link

Mutation of Met

Reference Number: 339
Graveel CR, London CA, Vande Woude GF. A mouse model of activating Met mutations. Cell Cycle4, 518-20. Epub 2005 (2005)


PubMed link      E-mail link

In vitro studies

Reference Number: 1
Joseph, A. et al. Expression of scatter factor in human bladder carcinoma. J Natl Cancer Inst 87, 372-7. (1995).
PubMed link      E-mail link

Reference Number: 172
Capello, D. et al. The tyrosine kinase receptor met and its ligand HGF are co-expressed and functionally active in HHV-8 positive primary effusion lymphoma. Leukemia 14, 285-91. (2000).
PubMed link      E-mail link

Reference Number: 175
Weimar, I. S. et al. Hepatocyte growth factor/scatter factor promotes adhesion of lymphoma cells to extracellular matrix molecules via alpha 4 beta 1 and alpha 5 beta 1 integrins. Blood 89, 990-1000. (1997).
PubMed link      E-mail link

Reference Number: 176
Jucker, M. et al. The Met/hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma. Leuk Res 18, 7-16. (1994).
PubMed link      E-mail link

Reference Number: 177
Gonzatti-Haces, M. et al. Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein-tyrosine kinases. Proc Natl Acad Sci U S A 85, 21-5. (1988).
PubMed link      E-mail link

Reference Number: 178
Pons, E., Uphoff, C. C. & Drexler, H. G. Expression of hepatocyte growth factor and its receptor c-met in human leukemia-lymphoma cell lines. Leuk Res 22, 797-804. (1998).
PubMed link      E-mail link

Reference Number: 431
Toyama T, Ido A, Sasak H, Maeda K, Yamashita K, Kubuki Y, Suzuki M, Matsuoka H, Tsubouchi H. Possible involvement of neutrophils in a serum level increase of hepatocyte growth factor in non-Hodgkin's lymphoma. Oncol Rep. 13, 439-44 (2005)
PubMed link      E-mail link

Reference Number: 816
Uddin S, Hussain AR, Ahmed M, Bu R, Ahmed SO, Ajarim D, Al-Dayel F, Bavi P, Al-Kuraya KS. Inhibition of fatty acid synthase suppresses c-Met receptor kinase and induces apoptosis in diffuse large B-cell lymphoma. Mol Cancer Ther. 9, 1244-55 (2010)
PubMed link      E-mail link

Reference Number: 1000
Schelter F, Halbgewachs B, Bäumler P, Neu C, Görlach A, Schrötzlmair F, Krüger A. Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1a. Clin Exp Metastasis. 28, 91-9 (2011)
PubMed link      E-mail link

Animal models

Reference Number: 179
Weimar, I. S. et al. HGF/SF and its receptor c-MET play a minor role in the dissemination of human B-lymphoma cells in SCID mice. Br J Cancer 81, 43-53 (1999).
PubMed link      E-mail link

Reference Number: 339
Graveel CR, London CA, Vande Woude GF. A mouse model of activating Met mutations. Cell Cycle4, 518-20. Epub 2005 (2005)


PubMed link      E-mail link

Reference Number: 682
Accornero P, Lattanzio G, Mangano T, Chiarle R, Taulli R, Bersani F, Forni PE, Miretti S, Scuoppo C, Dastrù W, Christensen JG, Crepaldi T, Ponzetto C. An in vivo model of Met-driven lymphoma as a tool to explore the therapeutic potential of Met inhibitors. Clin Cancer Res. 14, 2220-6 (2008)
PubMed link      E-mail link

Reference Number: 1747
Nakamura M, Takahashi T, Matsui H, Baniwa Y, Takahashi S, Murayama SY, Serizawa H, Suzuki H, Hibi T. Alteration of angiogenesis in Helicobacter heilmannii-induced mucosa-associated lymphoid tissue lymphoma: interaction with c-Met and hepatocyte growth factor. J Gastroenterol Hepatol. 29 Suppl 4:70-6 (2014)
PubMed link      E-mail link

Therapeutic Development

Reference Number: 682
Accornero P, Lattanzio G, Mangano T, Chiarle R, Taulli R, Bersani F, Forni PE, Miretti S, Scuoppo C, Dastrù W, Christensen JG, Crepaldi T, Ponzetto C. An in vivo model of Met-driven lymphoma as a tool to explore the therapeutic potential of Met inhibitors. Clin Cancer Res. 14, 2220-6 (2008)
PubMed link      E-mail link

Reference Number: 710
Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, Yamazaki S, Alton GR, Mroczkowski B, Los G. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther. 6, 3314-22 (2007)
PubMed link      E-mail link

Reference Number: 713
Ria R, Cirulli T, Giannini T, Bambace S, Serio G, Portaluri M, Ribatti D, Vacca A, Dammacco F. Serum levels of angiogenic cytokines decrease after radiotherapy in non-Hodgkin lymphomas. Clin Exp Med. 8,141-5 (2008) Epub 2008 Sep 13
PubMed link      E-mail link

Reference Number: 802
Uddin S, Hussain AR, Ahmed M, Al-Dayel F, Bu R, Bavi P, Al-Kuraya KS. Inhibition of c-MET is a potential therapeutic strategy for treatment of diffuse large B-cell lymphoma. Lab Invest. 90, 1346-56 (2010)
PubMed link      E-mail link

Reference Number: 1539
Heigener DF, Reck M. Crizotinib. Recent Results Cancer Res. 201, 197-205 (2014)
PubMed link      E-mail link

Reference Number: 1803
Dai L, Trillo-Tinoco J, Cao Y, Bonstaff K, Doyle L, Del Valle L, Whitby D, Parsons C, Reiss K, Zabaleta J, Qin Z. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood. 126, 2821-31 (2015)
PubMed link      E-mail link

Reviews

Reference Number: 887
Mahtouk K, Tjin EP, Spaargaren M, Pals ST. The HGF/MET pathway as target for the treatment of multiple myeloma and B-cell lymphomas. Biochim Biophys Acta. 1806, 208-19 (2010)
PubMed link      E-mail link

Reference Number: 958
Rodig SJ, Shapiro GI. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases. Curr Opin Investig Drugs. 11, 1477-90 (2010)
PubMed link      E-mail link

Cancer Type: Adult T Cell Leukemia

HGF/SF expression

Reference Number: 516
Choi YL, Tsukasaki K, O'Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, Takada S, Aburatani H, Kamihira S, Nakamura T, Tomonaga M, Mano H. A genomic analysis of adult T-cell leukemia. Oncogene. 26, 1245-55 (2007)
PubMed link      E-mail link

Reference Number: 690
Onimaru Y, Tsukasaki K, Murata K, Imaizumi Y, Choi YL, Hasegawa H, Sugahara K, Yamada Y, Hayashi T, Nakashima M, Taguchi T, Mano H, Kamihira S, Tomonaga M. Autocrine and/or paracrine growth of aggressive ATLL cells caused by HGF and c-Met. Int J Oncol. 33, 697-703 (2008)
PubMed link      E-mail link

Met expression

Reference Number: 180
Imaizumi, Y. et al. Expression of the c-Met proto-oncogene and its possible involvement in liver invasion in adult T-cell leukemia. Clin Cancer Res 9, 181-7 (2003).
PubMed link      E-mail link

Reference Number: 516
Choi YL, Tsukasaki K, O'Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, Takada S, Aburatani H, Kamihira S, Nakamura T, Tomonaga M, Mano H. A genomic analysis of adult T-cell leukemia. Oncogene. 26, 1245-55 (2007)
PubMed link      E-mail link

Reference Number: 690
Onimaru Y, Tsukasaki K, Murata K, Imaizumi Y, Choi YL, Hasegawa H, Sugahara K, Yamada Y, Hayashi T, Nakashima M, Taguchi T, Mano H, Kamihira S, Tomonaga M. Autocrine and/or paracrine growth of aggressive ATLL cells caused by HGF and c-Met. Int J Oncol. 33, 697-703 (2008)
PubMed link      E-mail link

Poor Prognosis

Reference Number: 690
Onimaru Y, Tsukasaki K, Murata K, Imaizumi Y, Choi YL, Hasegawa H, Sugahara K, Yamada Y, Hayashi T, Nakashima M, Taguchi T, Mano H, Kamihira S, Tomonaga M. Autocrine and/or paracrine growth of aggressive ATLL cells caused by HGF and c-Met. Int J Oncol. 33, 697-703 (2008)
PubMed link      E-mail link

Mutation of Met

In vitro studies

Reference Number: 180
Imaizumi, Y. et al. Expression of the c-Met proto-oncogene and its possible involvement in liver invasion in adult T-cell leukemia. Clin Cancer Res 9, 181-7 (2003).
PubMed link      E-mail link

Animal models

Therapeutic Development

Reference Number: 516
Choi YL, Tsukasaki K, O'Neill MC, Yamada Y, Onimaru Y, Matsumoto K, Ohashi J, Yamashita Y, Tsutsumi S, Kaneda R, Takada S, Aburatani H, Kamihira S, Nakamura T, Tomonaga M, Mano H. A genomic analysis of adult T-cell leukemia. Oncogene. 26, 1245-55 (2007)
PubMed link      E-mail link

Reviews

Cancer Type: Acute Myelogenous Leukemia

HGF/SF expression

Reference Number: 181
Hino, M. et al. Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells. Br J Cancer 73, 119-23. (1996).
PubMed link      E-mail link

Reference Number: 182
Hjorth-Hansen, H. et al. Elevated serum concentrations of hepatocyte growth factor in acute myelocytic leukaemia. Eur J Haematol 62, 129-34 (1999).
PubMed link      E-mail link

Reference Number: 183
Verstovsek, S. et al. Plasma hepatocyte growth factor is a prognostic factor in patients with acute myeloid leukemia but not in patients with myelodysplastic syndrome. Leukemia 15, 1165-70. (2001).
PubMed link      E-mail link

Met expression

Reference Number: 1735
McGee SF, Kornblau SM, Qiu Y, Look AT, Zhang N, Yoo SY, Coombes KR, Kentsis A Biological properties of ligand-dependent activation of the MET receptor kinase in acute myeloid leukemia. Leukemia. 29, 1218-21 (2015)
PubMed link      E-mail link

Poor Prognosis

Mutation of Met

In vitro studies

Reference Number: 184
Weimar, I. S. et al. Hepatocyte growth factor/scatter factor (HGF/SF) affects proliferation and migration of myeloid leukemic cells. Leukemia 12, 1195-203 (1998).
PubMed link      E-mail link

Animal models

Therapeutic Development

Reviews

Cancer Type: Chronic Myeloid Leukemia

HGF/SF expression

Reference Number: 181
Hino, M. et al. Hepatocyte growth factor levels in bone marrow plasma of patients with leukaemia and its gene expression in leukaemic blast cells. Br J Cancer 73, 119-23. (1996).
PubMed link      E-mail link

Reference Number: 273
Kim JG, Sohn SK, Kim DH, Baek JH, Lee NY, Suh JS, Chae SC, Lee KS, Lee KB. Clinical implications of angiogenic factors in patients with acute or chronic leukemia: hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia. Leuk Lymphoma. 46, 885-91 (2005)
PubMed link      E-mail link

Reference Number: 849
Zhelyazkova AG, Tonchev AB, Kolova P, Ivanova L, Gercheva L. Prognostic significance of hepatocyte growth factor and microvessel bone marrow density in patients with chronic myeloid leukaemia. Scand J Clin Lab Invest. 68, 492-500 (2008)
PubMed link      E-mail link

Reference Number: 1208
Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJ, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Vande Woude G, Licht JD, Kung AL, Staudt LM, Look AT. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med. 18, 1118-22 (2012)
PubMed link      E-mail link

Reference Number: 1276
Cerny-Reiterer S, Ghanim V, Hoermann G, Aichberger KJ, Herrmann H, Muellauer L, Repa A, Sillaber C, Walls AF, Mayerhofer M, Valent P. Identification of basophils as a major source of hepatocyte growth factor in chronic myeloid leukemia: a novel mechanism of BCR-ABL1-independent disease progression. Neoplasia. 14, 572-84 (2012)
PubMed link      E-mail link

Met expression

Reference Number: 1208
Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E, Christie A, Valk PJ, Delwel R, Ngo V, Kutok JL, Dahlberg SE, Moreau LA, Byers RJ, Christensen JG, Vande Woude G, Licht JD, Kung AL, Staudt LM, Look AT. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med. 18, 1118-22 (2012)
PubMed link      E-mail link

Poor Prognosis

Reference Number: 273
Kim JG, Sohn SK, Kim DH, Baek JH, Lee NY, Suh JS, Chae SC, Lee KS, Lee KB. Clinical implications of angiogenic factors in patients with acute or chronic leukemia: hepatocyte growth factor levels have prognostic impact, especially in patients with acute myeloid leukemia. Leuk Lymphoma. 46, 885-91 (2005)
PubMed link      E-mail link

Mutation of Met

In vitro studies

Animal models

Therapeutic Development

Reference Number: 1276
Cerny-Reiterer S, Ghanim V, Hoermann G, Aichberger KJ, Herrmann H, Muellauer L, Repa A, Sillaber C, Walls AF, Mayerhofer M, Valent P. Identification of basophils as a major source of hepatocyte growth factor in chronic myeloid leukemia: a novel mechanism of BCR-ABL1-independent disease progression. Neoplasia. 14, 572-84 (2012)
PubMed link      E-mail link

Reference Number: 1278
Fialin C, Larrue C, Vergez F, Sarry JE, Bertoli S, Mansat-De Mas V, Demur C, Delabesse E, Payrastre B, Manenti S, Roche S, Récher C. The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors. Leukemia. 27, 325-35 (2013)
PubMed link      E-mail link

Reviews